760 research outputs found

    A Bose-Einstein condensate in a random potential

    Full text link
    An optical speckle potential is used to investigate the static and dynamic properties of a Bose-Einstein condensate in the presence of disorder. For strong disorder the condensate is localized in the deep wells of the potential. With smaller levels of disorder, stripes are observed in the expanded density profile and strong damping of dipole and quadrupole oscillations is seen. Uncorrelated frequency shifts of the two modes are measured for a weak disorder and are explained using a sum-rules approach and by the numerical solution of the Gross-Pitaevskii equation

    Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide

    Full text link
    We investigate the one-dimensional expansion of a Bose-Einstein condensate in an optical guide in the presence of a random potential created with optical speckles. With the speckle the expansion of the condensate is strongly inhibited. A detailed investigation has been carried out varying the experimental conditions and checking the expansion when a single optical defect is present. The experimental results are in good agreement with numerical calculations based on the Gross-Pitaevskii equation.Comment: 5 pages, 5 figure

    Classical noise and flux: the limits of multi-state atom lasers

    Get PDF
    By direct comparison between experiment and theory, we show how the classical noise on a multi-state atom laser beam increases with increasing flux. The trade off between classical noise and flux is an important consideration in precision interferometric measurement. We use periodic 10 microsecond radio-frequency pulses to couple atoms out of an F=2 87Rb Bose-Einstein condensate. The resulting atom laser beam has suprising structure which is explained using three dimensional simulations of the five state Gross-Pitaevskii equations.Comment: 4 pages, 3 figure

    Unstable regimes for a Bose-Einstein condensate in an optical lattice

    Full text link
    We report on the experimental characterization of energetic and dynamical instability, two mechanisms responsible for the breakdown of Bloch waves in a Bose-Einstein condensate interacting with a 1D optical lattice. A clear separation of these two regimes is obtained performing measurements at different temperatures of the atomic sample. The timescales of the two processes have been determined by measuring the losses induced in the condensate. A simple phenomenological model is introduced for energetic instability while a full comparison is made between the experiment and the 3D Gross-Pitaevskii theory that accounts for dynamical instability

    Stratospheric aircraft exhaust plume and wake chemistry studies

    Get PDF
    This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3

    Bosons in Disordered Optical Potentials

    Full text link
    In this work we systematically investigate the condensate properties, superfluid properties and quantum phase transitions in interacting Bose gases trapped in disordered optical potentials. We numerically solve the Bose-Hubbard Hamiltonian exactly for different: (a) types of disorder, (b) disorder strengths, and (c) interatomic interactions. The three types of disorder studied are: quasiperiodic disorder, uniform random disorder and random speckle-type disorder. We find that the Bose glass, as identified by Fisher et al [Phys. Rev. B {\bf 40}, 546 (1989)], contains a normal condensate component and we show how the three different factors listed above affect it.Comment: 4 pages, 4 figures (low res) v2 Title,Abstract,Introduction: changes; Figure 3: Add label to axi

    Game theory meets information security management

    Get PDF
    Part 1: Intrusion DetectionInternational audienceThis work addresses the challenge “how do we make better security decisions?” and it develops techniques to support human decision making and algorithms which enable well-founded cyber security decisions to be made. In this paper we propose a game theoretic model which optimally allocates cyber security resources such as administrators’ time across different tasks. We first model the interactions between an omnipresent attacker and a team of system administrators seen as the defender, and we have derived the mixed Nash Equilibria (NE) in such games. We have formulated general-sum games that represent our cyber security environment, and we have proven that the defender’s Nash strategy is also minimax. This result guarantees that independently from the attacker’s strategy the defender’s solution is optimal. We also propose Singular Value Decomposition (SVD) as an efficient technique to compute approximate equilibria in our games. By implementing and evaluating a minimax solver with SVD, we have thoroughly investigated the improvement that Nash defense introduces compared to other strategies chosen by common sense decision algorithms. Our key finding is that a particular NE, which we call weighted NE, provides the most effective defense strategy. In order to validate this model we have used real-life statistics from Hackmageddon, the Verizon 2013 Data Breach Investigation report, and the Ponemon report of 2011. We finally compare the game theoretic defense method with a method which implements a stochastic optimization algorithm

    Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    Get PDF
    A detailed understanding of the climate and air quality impacts of aviation requires measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground 143 m downwind of the engines and characterized as a function of engine power from idle (4% maximum rated thrust) through 85% power. Results show that I/SVOC emissions are highest during engine idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC) measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10–20% of the total organic gas-phase emissions at idle, and an increasing fraction of the total gas-phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30%) and may be linked to cracked, partially oxidized or unburned fuel components.United States. Dept. of Energy. Office of Science (Small Business Innovation Research Program Grant DE-SC0001666)United States. Environmental Protection Agency (National Center for Environmental Research Grant RD834560

    Reproducible culture and differentiation of mouse embryonic stem cells using an automated microwell platform.

    Get PDF
    The use of embryonic stem cells (ESCs) and their progeny in high throughput drug discovery and regenerative medicine will require production at scale of well characterized cells at an appropriate level of purity. The adoption of automated bioprocessing techniques offers the possibility to overcome the lack of consistency and high failure rates seen with current manual protocols. To build the case for increased use of automation this work addresses the key question: "can an automated system match the quality of a highly skilled and experienced person working manually?" To answer this we first describe an integrated automation platform designed for the 'hands-free' culture and differentiation of ESCs in microwell formats. Next we outline a framework for the systematic investigation and optimization of key bioprocess variables for the rapid establishment of validatable Standard Operating Procedures (SOPs). Finally the experimental comparison between manual and automated bioprocessing is exemplified by expansion of the murine Oct-4-GiP ESC line over eight sequential passages with their subsequent directed differentiation into neural precursors. Our results show that ESCs can be effectively maintained and differentiated in a highly reproducible manner by the automated system described. Statistical analysis of the results for cell growth over single and multiple passages shows up to a 3-fold improvement in the consistency of cell growth kinetics with automated passaging. The quality of the cells produced was evaluated using a panel of biological markers including cell growth rate and viability, nutrient and metabolite profiles, changes in gene expression and immunocytochemistry. Automated processing of the ESCs had no measurable negative effect on either their pluripotency or their ability to differentiate into the three embryonic germ layers. Equally important is that over a 6-month period of culture without antibiotics in the medium, we have not had any cases of culture contamination. This study thus confirms the benefits of adopting automated bioprocess routes to produce cells for therapy and for use in basic discovery research
    • …
    corecore