19 research outputs found

    Evaluation of confound regression strategies for the mitigation of micromovement artifact in studies of dynamic resting-state functional connectivity and multilayer network modularity

    Get PDF
    Dynamic functional connectivity reflects the spatiotemporal organization of spontaneous brain activity in health and disease. Dynamic functional connectivity may be susceptible to artifacts induced by participant motion. This report provides a systematic evaluation of 12 commonly used participant-level confound regression strategies designed to mitigate the effects of micromovements in a sample of 393 youths (ages 8–22 years). Each strategy was evaluated according to a number of benchmarks, including (a) the residual association between participant motion and edge dispersion, (b) distance-dependent effects of motion on edge dispersion, (c) the degree to which functional subnetworks could be identified by multilayer modularity maximization, and (d) measures of module reconfiguration, including node flexibility and node promiscuity. Results indicate variability in the effectiveness of the evaluated pipelines across benchmarks. Methods that included global signal regression were the most consistently effective de-noising strategies. Dynamic functional connectivity reflects the spatiotemporal organization of spontaneous brain activity in health and disease, but it can be susceptible to motion artifacts. Here we provide a systematic evaluation of 12 commonly used participant-level confound regression strategies designed to mitigate the effects of micromovements in a sample of 393 youths (ages 8–22 years). Each strategy was evaluated according to the residual association between participant motion and edge dispersion, distance-dependent effects of motion on edge dispersion, the degree to which functional subnetworks could be identified by multilayer modularity maximization, and measures of module reconfiguration, including node flexibility and node promiscuity. Results indicate variability in the effectiveness of the evaluated pipelines across benchmarks. Methods that included global signal regression were the most consistently effective de-noising strategies

    The daily association between affect and alcohol use: a meta-analysis of individual participant data

    Get PDF
    Influential psychological theories hypothesize that people consume alcohol in response to the experience of both negative and positive emotions. Despite two decades of daily diary and ecological momentary assessment research, it remains unclear whether people consume more alcohol on days they experience higher negative and positive affect in everyday life. In this preregistered meta-analysis, we synthesized the evidence for these daily associations between affect and alcohol use. We included individual participant data from 69 studies (N = 12,394), which used daily and momentary surveys to assess affect and the number of alcoholic drinks consumed. Results indicate that people are not more likely to drink on days they experience high negative affect, but are more likely to drink and drink heavily on days high in positive affect. People self-reporting a motivational tendency to drink-to-cope and drink-to-enhance consumed more alcohol, but not on days they experienced higher negative and positive affect. Results were robust across different operationalizations of affect, study designs, study populations, and individual characteristics. These findings challenge the long-held belief that people drink more alcohol following increases in negative affect. Integrating these findings under different theoretical models and limitations of this field of research, we collectively propose an agenda for future research to explore open questions surrounding affect and alcohol use.The present study was funded by the Canadian Institutes of Health Research Grant MOP-115104 (Roisin M. O’Connor), Canadian Institutes of Health Research Grant MSH-122803 (Roisin M. O’Connor), John A. Hartford Foundation Grant (Paul Sacco), Loyola University Chicago Research Support Grant (Tracy De Hart), National Institute for Occupational Safety and Health Grant T03OH008435 (Cynthia Mohr), National Institutes of Health (NIH) Grant F31AA023447 (Ryan W. Carpenter), NIH Grant R01AA025936 (Kasey G. Creswell), NIH Grant R01AA025969 (Catharine E. Fairbairn), NIH Grant R21AA024156 (Anne M. Fairlie), NIH Grant F31AA024372 (Fallon Goodman), NIH Grant R01DA047247 (Kevin M. King), NIH Grant K01AA026854 (Ashley N. Linden-Carmichael), NIH Grant K01AA022938 (Jennifer E. Merrill), NIH Grant K23AA024808 (Hayley Treloar Padovano), NIH Grant P60AA11998 (Timothy Trull), NIH Grant MH69472 (Timothy Trull), NIH Grant K01DA035153 (Nisha Gottfredson), NIH Grant P50DA039838 (Ashley N. Linden-Carmichael), NIH Grant K01DA047417 (David M. Lydon-Staley), NIH Grant T32DA037183 (M. Kushner), NIH Grant R21DA038163 (A. Moore), NIH Grant K12DA000167 (M. Potenza, Stephanie S. O’Malley), NIH Grant R01AA025451 (Bruce Bartholow, Thomas M. Piasecki), NIH Grant P50AA03510 (V. Hesselbrock), NIH Grant K01AA13938 (Kristina M. Jackson), NIH Grant K02AA028832 (Kevin M. King), NIH Grant T32AA007455 (M. Larimer), NIH Grant R01AA025037 (Christine M. Lee, M. Patrick), NIH Grant R01AA025611 (Melissa Lewis), NIH Grant R01AA007850 (Robert Miranda), NIH Grant R21AA017273 (Robert Miranda), NIH Grant R03AA014598 (Cynthia Mohr), NIH Grant R29AA09917 (Cynthia Mohr), NIH Grant T32AA07290 (Cynthia Mohr), NIH Grant P01AA019072 (P. Monti), NIH Grant R01AA015553 (J. Morgenstern), NIH Grant R01AA020077 (J. Morgenstern), NIH Grant R21AA017135 (J. Morgenstern), NIH Grant R01AA016621 (Stephanie S. O’Malley), NIH Grant K99AA029459 (Marilyn Piccirillo), NIH Grant F31AA022227 (Nichole Scaglione), NIH Grant R21AA018336 (Katie Witkiewitz), Portuguese State Budget Foundation for Science and Technology Grant UIDB/PSI/01662/2020 (Teresa Freire), University of Washington Population Health COVID-19 Rapid Response Grant (J. Kanter, Adam M. Kuczynski), U.S. Department of Defense Grant W81XWH-13-2-0020 (Cynthia Mohr), SANPSY Laboratory Core Support Grant CNRS USR 3413 (Marc Auriacombe), Social Sciences and Humanities Research Council of Canada Grant (N. Galambos), and Social Sciences and Humanities Research Council of Canada Grant (Andrea L. Howard)

    An analysis-ready and quality controlled resource for pediatric brain white-matter research

    Get PDF
    We created a set of resources to enable research based on openly-available diffusion MRI (dMRI) data from the Healthy Brain Network (HBN) study. First, we curated the HBN dMRI data (N = 2747) into the Brain Imaging Data Structure and preprocessed it according to best-practices, including denoising and correcting for motion effects, susceptibility-related distortions, and eddy currents. Preprocessed, analysis-ready data was made openly available. Data quality plays a key role in the analysis of dMRI. To optimize QC and scale it to this large dataset, we trained a neural network through the combination of a small data subset scored by experts and a larger set scored by community scientists. The network performs QC highly concordant with that of experts on a held out set (ROC-AUC = 0.947). A further analysis of the neural network demonstrates that it relies on image features with relevance to QC. Altogether, this work both delivers resources to advance transdiagnostic research in brain connectivity and pediatric mental health, and establishes a novel paradigm for automated QC of large datasets

    Author Correction: An analysis-ready and quality controlled resource for pediatric brain white-matter research

    Get PDF

    Effective learning is accompanied by high-dimensional and efficient representations of neural activity

    No full text
    A fundamental cognitive process is to map value and identity onto the objects we learn about. However, what space best embeds this mapping is not completely understood. Here we develop tools to quantify the space and organization of such a mapping in neural responses as reflected in functional MRI, to show that quick learners have a higher dimensional representation than slow learners, and hence more easily distinguishable whole-brain responses to objects of different value. Furthermore, we find that quick learners display more compact embedding of their neural responses, and hence have higher ratios of their stimuli dimension to their embedding dimension, which is consistent with greater efficiency of cognitive coding. Lastly, we investigate the neurophysiological drivers at smaller scales and study the complementary distinguishability of whole-brain responses. Our results demonstrate a spatial organization of neural responses characteristic of learning and offer geometric measures applicable to identifying efficient coding in higher-order cognitive processes

    Socioemotional Dynamics of Emotion Regulation and Depressive Symptoms: A Person-Specific Network Approach

    No full text
    Socioemotional processes engaged in daily life may afford and/or constrain individuals’ emotion regulation in ways that affect psychological health. Recent findings from experience sampling studies suggest that persistence of negative emotions (emotion inertia), the strength of relations among an individual’s negative emotions (density of the emotion network), and cycles of negative/aggressive interpersonal transactions are related to psychological health. Using multiple bursts of intensive experience sampling data obtained from 150 persons over one year, person-specific analysis, and impulse response analysis, this study quantifies the complex and interconnected socioemotional processes that surround individuals’ daily social interactions and on-going regulation of negative emotion in terms of recovery time. We also examine how this measure of regulatory inefficiency is related to interindividual differences and intraindividual change in level of depressive symptoms. Individuals with longer recovery times had higher overall level of depressive symptoms. Also, during periods where recovery time of sadness was longer than usual, individuals’ depressive symptoms were also higher than usual, particularly among individuals who experienced higher overall level of stressful life events. The findings and analysis highlight the utility of a person-specific network approach to study emotion regulation, how regulatory processes change over time, and potentially how planned changes in the configuration of individuals’ systems may contribute to psychological health
    corecore