88 research outputs found

    Assessing the technical potential for underground thermal energy storage in the UK

    Get PDF
    Heating and cooling both make up a large part of the total energy demand in the UK; long-term seasonal thermal energy storage (STES) can address temporal imbalances between varying supply and demand of heat to buildings and processes. Underground thermal energy storage (UTES) can play a role in energy decarbonisation by storing waste heat from space cooling, refrigeration, data processing, industrial processes, harvested summer solar thermal energy or even heat generated by surplus renewable (solar or wind) electricity with fluctuating supply. This paper evaluates a range of UTES technologies in a UK context and addresses geological suitability, storage capacity, low-carbon heat sources, surface heat sources and demand. This review concludes that there is a significant potential for UTES in the UK for both aquifer thermal energy storage (ATES) and borehole thermal energy storage (BTES) systems, coinciding with surface heat sources and demand. Therefore, uptake in UTES technology will help achieve net-zero carbon neutral targets by 2050. There is also scope to utilise UTES technologies within existing subsurface infrastructure. There are 464 oil and gas wells which could be repurposed upon end of life using different UTES technologies. However, the potential for repurposing needs further evaluation; deep single well BTES systems will have a high surface area to volume ratio for storage, reducing the efficiency of such systems and the potential for ATES is limited by issues associated with contaminants. 23,000 abandoned mines underlay ~25 % of the UKs population and could be utilised for minewater thermal energy storage (MTES)

    Results of the United States multicenter prospective study evaluating the Zenith fenestrated endovascular graft for treatment of juxtarenal abdominal aortic aneurysms

    Get PDF
    OBJECTIVE: This study reports the results of a prospective, multicenter trial designed to evaluate the safety and effectiveness of the Zenith fenestrated endovascular graft (Cook Medical, Bloomington, Ind) for treatment of juxtarenal abdominal aortic aneurysms (AAAs). METHODS: Sixty-seven patients with juxtarenal AAAs were prospectively enrolled in 14 centers in the United States from 2005 to 2012. Custom-made fenestrated stent grafts were designed with one to three fenestrations on the basis of analysis of computed tomography data sets. Renal alignment was performed with balloon-expandable stents. Follow-up included clinical examination, laboratory studies, mesenteric-renal duplex ultrasound, abdominal radiography, and computed tomography imaging at hospital discharge and at 1 month, 6 months, and 12 months and yearly thereafter up to 5 years. RESULTS: There were 54 male and 13 female patients with a mean age of 74 ± 8 years enrolled. Mean aneurysm diameter was 60 ± 10 mm. A total of 178 visceral arteries required incorporation with small fenestrations in 118, scallops in 51, and large fenestrations in nine. Of these, all 118 small fenestrations (100%), eight of the scallops (16%), and one of the large fenestrations (11%) were aligned by stents. Technical success was 100%. There was one postoperative death within 30 days (1.5%). Mean length of hospital stay was 3.3 ± 2.1 days. No aneurysm ruptures or conversions were noted during a mean follow-up of 37 ± 17 months (range, 3-65 months). Two patients (3%) had migration ≥ 10 mm with no endoleak, both due to cranial progression of aortic disease. Of a total of 129 renal arteries targeted by a fenestration, there were four (3%) renal artery occlusions and 12 (9%) stenoses. Fifteen patients (22%) required secondary interventions for renal artery stenosis/occlusion in 11 patients, type II endoleak in three patients, and type I endoleak in one patient. At 5 years, patient survival was 91% ± 4%, and freedom from major adverse events was 79% ± 6%; primary and secondary patency of targeted renal arteries was 81% ± 5% and 97% ± 2%, freedom from renal function deterioration was 91% ± 5%, and freedom from secondary interventions was 63% ± 9%. CONCLUSIONS: This prospective study demonstrates that endovascular repair of juxtarenal AAAs with the Zenith fenestrated AAA stent graft is safe and effective. Mortality and morbidity are low in properly selected patients treated in centers with experience in these procedures

    Updates on radiotherapy-immunotherapy combinations: Proceedings of 6(th) annual ImmunoRad conference

    Get PDF
    Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference

    How to establish the outer limits of reperfusion therapy

    Get PDF
    Reperfusion therapy with intravenous alteplase and endovascular therapy are effective treatments for selected patients with acute ischemic stroke. Guidelines for treatment are based upon randomized trials demonstrating substantial treatment effects for highly selected patients based on time from stroke onset and imaging features. However, patients beyond the current established guidelines might benefit with lesser but still clinically significant treatment effects. The STAIR (Stroke Treatment Academic Industry Roundtable) XI meeting convened a workgroup to consider the “outer limits” of reperfusion therapy by defining the current boundaries, and exploring optimal parameters and methodology for determining the outer limits. In addition to statistical significance, the minimum clinically important difference should be considered in exploring the limits of reperfusion therapy. Societal factors and quality of life considerations should be incorporated into assessment of treatment efficacy. The threshold for perception of benefit in the medical community may differ from that necessary for the Food and Drug Administration approval. Data from alternative sources such as platform trials, registries and large pragmatic trials should supplement randomized controlled trials to improve generalizability to routine clinical practice. Further interactions between industry and academic centers should be encouraged

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
    corecore