4 research outputs found

    Sensitivity of flood hazard and damage to modelling approaches

    Get PDF
    Combination of uncertainties in water level and wave height predictions for extreme storms can result in unacceptable levels of error, rendering flood hazard assessment frameworks less useful. A 2D inundation model, LISFLOOD-FP, was used to quantify sensitivity of flooding to uncertainty in coastal hazard conditions and method used to force the coastal boundary of the model. It is shown that flood inundation is more sensitive to small changes in coastal hazard conditions due to the setup of the regional model, than the approach used to apply these conditions as boundary forcing. Once the threshold for flooding is exceeded, a few centimetres increase in combined water level and wave height increases both the inundation and consequent damage costs. Improved quantification of uncertainty in inundation assessments can aid long-term coastal flood hazard mitigation and adaptation strategies, to increase confidence in knowledge of how coastlines will respond to future changes in sea-level

    Increased coastal wave hazard generated by differential wind and wave direction in hyper-tidal estuaries

    Get PDF
    Wave overtopping and subsequent coastal flood hazard is strongly controlled by wind and water levels, and is especially critical in hyper-tidal estuaries where even small changes in wave heights can be catastrophic if they are concurrent with high spring tide. Wave hazard in estuaries is largely attributed to high amplitude shorter period, locally generated wind waves; while low amplitude longer period waves rarely impact low-lying coastal zones up-estuary. Here, the effect of wind and wave properties on up-estuary wave propagation and the sensitivity of significant wave height are investigated numerically along the shoreline of the Severn Estuary, southwest England, as an example. Representative values for wind speed and direction, wave height, period and direction are used to identify key combinations of factors that define the wave hazard generation. High amplitude, short period wind waves are sensitive to opposing winds, with a steepening effect that varies along the estuary shoreline, highlighting the effect of estuarine geometry on wave hazard. Low amplitude, long period wind waves respond with maximum variability in significant wave height to strong winds resulting in their propagation further up-estuary. Our results advance current understanding of the compound interaction between wind and waves, and identify critical conditions maximizing the hazard and hazard variability along the shoreline. The outcomes from this research can help to avoid economic losses from operational downtime in ports and harbors, inform sustainable coastal sea defense design and understand how wave hazard may vary under future climate due to changing storm tracks. Results can also be applied to the design of coastal infrastructure and facilitation of emergency response planning

    A Comprehensive Assessment of Climate Change and Coastal Inundation through Satellite-Derived Datasets: A Case Study of Sabang Island, Indonesia

    Get PDF
    Climate-change-induced hazards are negatively affecting the small islands across Indonesia. Sabang Island is one of the most vulnerable small islands due to the rising sea levels and increasing coastal inundation which threaten the low-lying coastal areas with and without coastal defences. However, there is still a lack of studies concerning the long-term trends in climatic variables and, consequently, sea level changes in the region. Accordingly, the current study attempts to comprehensively assess sea level changes and coastal inundation through satellite-derived datasets and model-based products around Sabang Island, Indonesia. The findings of the study show that the temperature (both minimum and maximum) and rainfall of the island are increasing by ~0.01 °C and ~11.5 mm per year, respectively. The trends of temperature and rainfall are closely associated with vegetative growth; an upward trend in the dense forest is noticed through the enhanced vegetation index (EVI). The trend analysis of satellite altimeter datasets shows that the sea level is increasing at a rate of 6.6 mm/year. The DEM-based modelling shows that sea level rise poses the greatest threat to coastal habitations and has significantly increased in recent years, accentuated by urbanisation. The GIS-based model results predict that about half of the coastal settlements (2.5 sq km) will be submerged completely within the next 30 years, provided the same sea level rise continues. The risk of coastal inundation is particularly severe in Sabang, the largest town on the island. The results allow regional, sub-regional, and local comparisons that can assess variations in climate change, sea level rise, coastal inundation, and associated vulnerabilitie

    Between Convergence and Exceptionalism: Americans and the British Model of Labor Relations, c. 1867–1920

    Full text link
    corecore