48 research outputs found

    A Tracer Investigation of the Atmospheric Dispersion in the Dyrnæs Valley, Greenland

    Get PDF

    Grey-box Modeling of Reversible Solid Oxide Cell Stack’s Electrical Dynamics Based on Electrochemical Impedance Spectroscopy

    Get PDF
    This paper aims to design a lumped-capacity modelof a reversible solid oxide cell stack for hydrogen electrolysis.The lumped-capacity model needs to have an adequate representationof the electrical dynamics over a wide operatingrange and a model structure suitable for the design of a physicalemulator. The grey-box model is based on data obtained by electrochemicalimpedance spectroscopy conducted on a commercialsolid oxide cell stack for four different gas compositions at sixaging stages. In addition, a comparison of the experimental andsimulated voltage response of the reversible solid oxide cell stackin cyclic reversible operation mode was conducted at differentaging levels of the stack

    Using CoCu2_2Ga/SiO2_2 to identify stability-issues in ethanol-selective Co-Cu alloyed catalysts in carbon monoxide hydrogenation

    Get PDF
    Hydrogenation of CO to higher alcohols such as ethanol is an attractive pathway for industrial production while avoiding competition with food crops. However, thermocatalytic ethanol production from syngas is currently hindered by the lack of selective catalysts. The structural integrity of ternary-alloyed CoCu2Ga nanoparticles supported on silica was studied during thermo-catalytic CO hydrogenation. Catalysts of four different CoCu2_2Ga weight-loadings were tested catalytically under differential conversion, showing their different intrinsic selectivity during CO hydrogenation towards ethanol, methanol, and hydrocarbons. CoCu2_2Ga catalysts with 3.5 wt% and 17.8 wt% proved most and least selective towards ethanol formation, respectively. These two were studied in depth using STEM-EDX of fresh and spent samples showing different size distributions of the nanoparticles for all samples, and a change in the Co/Cu distribution of the nanoparticles from fresh to spent samples. In situ characterization using XRD, XANES, and EXAFS during CO hydrogenation supported the findings of the STEM-EDX and elucidated that the fresh more homogenous catalyst consisting of ternary CoCu2_2Ga nanoparticles de-alloyed into Cu-rich and CoGa-rich nanoparticles. This de-alloying was possibly driven by two factors: the metastable phase of CoCu2_2Ga decreasing its free energy by separating Cu and Co; and the strong interaction between Co and CO further driving a segregation. From a theoretical standpoint, Cu-Co intermetallics present the most selective catalyst to form ethanol over methane and methanol. The experimental findings presented here support the theory, although further efforts are needed to improve structural stability during the catalytic reaction

    Optimizing Ni-Fe-Ga alloys into Ni2_{2}FeGa for the hydrogenation of CO2_{2} into methanol

    Get PDF
    A screening study of the catalytic performance of ternary alloy nanoparticles containing nickel, iron and gallium supported on silica for methanol synthesis from CO2_{2} and H2_{2} was performed. Catalysts were prepared by incipient wetness impregnation and subsequently reduced in H2_{2} before catalytic testing. Ni2_{2}FeGa showed the best performance of the tested catalysts in terms of methanol yield. An optimization of the preparation was done to improve activity and selectivity, reaching a performance close to that of commercially available Cu/ZnO/Al2_{2}O3_{3}/MgO at low reaction temperatures and pressure. Extensive in situ characterisation using environmental TEM, in situ XRD and in situ EXAFS of the formation of the Ni2_{2}FeGa catalyst explains an optimal reduction temperature of 550 °C: warm enough that the three atomic species will form an alloy while cold enough to prevent the catalyst from sintering during the formation

    Central but not systemic administration of XPro1595 is therapeutic following moderate spinal cord injury in mice

    Get PDF
    BACKGROUND: Glial cell activation and overproduction of inflammatory mediators in the central nervous system (CNS) have been implicated in acute traumatic injuries to the CNS, including spinal cord injury (SCI). Elevated levels of the proinflammatory cytokine tumor necrosis factor (TNF), which exists in both a soluble (sol) and a transmembrane (tm) form, have been found in the lesioned cord early after injury. The contribution of solTNF versus tmTNF to the development of the lesion is, however, still unclear. METHODS: We tested the effect of systemically or centrally blocking solTNF alone, using XPro1595, versus using the drug etanercept to block both solTNF and tmTNF compared to a placebo vehicle following moderate SCI in mice. Functional outcomes were evaluated using the Basso Mouse Scale, rung walk test, and thermal hyperalgesia analysis. The inflammatory response in the lesioned cord was investigated using immunohistochemistry and western blotting analyses. RESULTS: We found that peripheral administration of anti-TNF therapies had no discernable effect on locomotor performances after SCI. In contrast, central administration of XPro1595 resulted in improved locomotor function, decreased anxiety-related behavior, and reduced damage to the lesioned spinal cord, whereas central administration of etanercept had no therapeutic effects. Improvements in XPro1595-treated mice were accompanied by increases in Toll-like receptor 4 and TNF receptor 2 (TNFR2) protein levels and changes in Iba1 protein expression in microglia/macrophages 7 and 28 days after SCI. CONCLUSIONS: These studies suggest that, by selectively blocking solTNF, XPro1595 is neuroprotective when applied directly to the lesioned cord. This protection may be mediated via alteration of the inflammatory environment without suppression of the neuroprotective effects of tmTNF signaling through TNFR2

    Inside-Out Regulation of ICAM-1 Dynamics in TNF-α-Activated Endothelium

    Get PDF
    Background: During transendothelial migration, leukocytes use adhesion molecules, such as ICAM-1, to adhere to the endothelium. ICAM-1 is a dynamic molecule that is localized in the apical membrane of the endothelium and clusters upon binding to leukocytes. However, not much is known about the regulation of ICAM-1 clustering and whether membrane dynamics are linked to the ability of ICAM-1 to cluster and bind leukocyte integrins. Therefore, we studied the dynamics of endothelial ICAM-1 under non-clustered and clustered conditions. Principal Findings: Detailed scanning electron and fluorescent microscopy showed that the apical surface of endothelial cells constitutively forms small filopodia-like protrusions that are positive for ICAM-1 and freely move within the lateral plane of the membrane. Clustering of ICAM-1, using anti-ICAM-1 antibody-coated beads, efficiently and rapidly recruits ICAM-1. Using fluorescence recovery after photo-bleaching (FRAP), we found that clustering increased the immobile fraction of ICAM-1, compared to non-clustered ICAM-1. This shift required the intracellular portion of ICAM-1. Moreover, biochemical assays showed that ICAM-1 clustering recruited beta-actin and filamin. Cytochalasin B, which interferes with actin polymerization, delayed the clustering of ICAM-1. In addition, we could show that cytochalasin B decreased the immobile fraction of clustered ICAM-1-GFP, but had no effect on non-clustered ICAM-1. Also, the motor protein myosin-II is recruited to ICAM-1 adhesion sites and its inhibition increased the immobile fraction of both non-clustered and clustered ICAM-1. Finally, blocking Rac1 activation, the formation of lipid rafts, myosin-II activity or actin polymerization, but not Src, reduced the adhesive function of ICAM-1, tested under physiological flow conditions. Conclusions: Together, these findings indicate that ICAM-1 clustering is regulated in an inside-out fashion through the actin cytoskeleton. Overall, these data indicate that signaling events within the endothelium are required for efficient ICAM-1-mediated leukocyte adhesio
    corecore