236 research outputs found

    The East-West method: an exposure-independent method to search for large scale anisotropies of cosmic rays

    Full text link
    The measurement of large scale anisotropies in cosmic ray arrival directions at energies above 10^13 eV is performed through the detection of Extensive Air Showers produced by cosmic ray interactions in the atmosphere. The observed anisotropies are small, so accurate measurements require small statistical uncertainties, i.e. large datasets. These can be obtained by employing ground detector arrays with large extensions (from 10^4 to 10^9 m^2) and long operation time (up to 20 years). The control of such arrays is challenging and spurious variations in the counting rate due to instrumental effects (e.g. data taking interruptions or changes in the acceptance) and atmospheric effects (e.g. air temperature and pressure effects on EAS development) are usually present. These modulations must be corrected very precisely before performing standard anisotropy analyses, i.e. harmonic analysis of the counting rate versus local sidereal time. In this paper we discuss an alternative method to measure large scale anisotropies, the "East-West method", originally proposed by Nagashima in 1989. It is a differential method, as it is based on the analysis of the difference of the counting rates in the East and West directions. Besides explaining the principle, we present here its mathematical derivation, showing that the method is largely independent of experimental effects, that is, it does not require corrections for acceptance and/or for atmospheric effects. We explain the use of the method to derive the amplitude and phase of the anisotropy and we demonstrate its power under different conditions of detector operation

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201
    • …
    corecore