106 research outputs found

    Restoring Functional Status: A Long-Term Case Report of Severe Lung and Ventilatory Muscle Pump Dysfunction Involving Recurrent Bacterial Pneumonias

    Get PDF
    Background and Purpose: Prolonged mechanical ventilation contributes to immobility and deconditioning making efforts to safely discontinue ventilator support desirable. This case report documents how implementing physical therapy treatment interventions, based on the Guide to Physical Therapist Practice, can help to restore a person’s functional status even after multiple years of mechanical ventilation dependency. Case Description: A patient (female; aged 63 years) with severe restrictive and obstructive ventilatory impairment has survived 34 recurrent pneumonias involving 6 bacterial pathogens while being mechanically ventilated at home. A 3-year study was approved and informed consent obtained for a home exercise program of resistive extremity and inspiratory muscle training along with exercise reconditioning. Tolerable distances walked, maximal inspiratory and expiratory pressures, hours spent on versus off mechanical ventilation, activities performed within and around her home, and community excursions taken were charted. Outcomes: Daily time tolerated off the ventilator improved from less than one to 12 hours, distance walked in 6 minutes increased 33%, and maximal inspiratory and expiratory pressures improved 62% and 9.6% respectively. These improvements made out-of-home social excursions possible. Discussion and Conclusions: This patient’s functional status improved following multiple physical therapy interventions dictated by the evaluation of initial physical therapy examination findings according to the Guide to Physical Therapist Practice. Long term mechanical ventilator dependency in the home environment did not exclude this patient from achieving clinically significant gains in functional status even when having severe restrictive and obstructive ventilator impairment

    Magnetic and transport properties of the spin-state disordered oxide La0.8Sr0.2Co_{1-x}Rh_xO_{3-\delta}

    Get PDF
    We report measurements and analysis of magnetization, resistivity and thermopower of polycrystalline samples of the perovskite-type Co/Rh oxide La0.8_{0.8}Sr0.2_{0.2}Co1−x_{1-x}Rhx_xO3−δ_{3-\delta}. This system constitutes a solid solution for a full range of xx,in which the crystal structure changes from rhombohedral to orthorhombic symmetry with increasing Rh content xx. The magnetization data reveal that the magnetic ground state immediately changes upon Rh substitution from ferromagnetic to paramagnetic with increasing xx near 0.25, which is close to the structural phase boundary. We find that one substituted Rh ion diminishes the saturation moment by 9 μB\mu_B, which implies that one Rh3+^{3+} ion makes a few magnetic Co3+^{3+} ions nonmagnetic (the low spin state), and causes disorder in the spin state and the highest occupied orbital. In this disordered composition (0.05≤x≤0.750.05\le x \le 0.75), we find that the thermopower is anomalously enhanced below 50 K. In particular, the thermopower of xx=0.5 is larger by a factor of 10 than those of xx=0 and 1, and the temperature coefficient reaches 4 μ\muV/K2^2 which is as large as that of heavy-fermion materials such as CeRu2_2Si2_2.Comment: 8 pages, 6 figures, accepted to Phys. Rev.

    Pulmonary Tumor Thrombotic Microangiopathy : A New Paraneoplastic Syndrome

    Get PDF
    This report, based on data from a clinical case, proposes that pulmonary tumor thrombotic microangiopathy, an underdiagnosed cause of pulmonary hypertension and death in patients with adenocarcinoma, is a paraneoplastic syndrome (PNS). Clinicians in general must be alert to the presence or development of PNS that may precede, coincide with, follow, or herald the recurrence or the primary diagnosis of malignancy since early recognition facilitates prompt diagnosis and treatment.Peer reviewe

    Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012

    Get PDF
    The Light Water Reactor Sustainability program at Idaho National Laboratory (INL) is actively conducting research to develop and demonstrate online monitoring (OLM) capabilities for active components in existing Nuclear Power Plants. A pilot project is currently underway to apply OLM to Generator Step-Up Transformers (GSUs) and Emergency Diesel Generators (EDGs). INL and the Electric Power Research Institute (EPRI) are working jointly to implement the pilot project. The EPRI Fleet-Wide Prognostic and Health Management (FW-PHM) Software Suite will be used to implement monitoring in conjunction with utility partners: the Shearon Harris Nuclear Generating Station (owned by Duke Energy for GSUs, and Braidwood Generating Station (owned by Exelon Corporation) for EDGs. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for GSUs. GSUs are main transformers that are directly connected to generators, stepping up the voltage from the generator output voltage to the highest transmission voltages for supplying electricity to the transmission grid. Technical experts from Shearon Harris are assisting INL and EPRI in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the FW-PHM Software Suite and tested using data from Shearon-Harris. Parallel research on EDGs is being conducted, and will be reported in an interim report during the first quarter of fiscal year 2013

    Communication Pathways in the Light Water Reactor Sustainability Online Monitoring Project

    Get PDF
    Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Large amounts of operational data, including failure data, are necessary for the development and calibration of diagnostic and prognostic algorithms. The ability to use data from all available resources will provide the most expeditious avenue to implementation of online monitoring in existing NPPs; however, operational plant data are often considered proprietary. Secure methods for transferring and storing data are discussed, along with a potential technology for implementation of online monitoring

    RRx-001 in Refractory Small-Cell Lung Carcinoma: A Case Report of a Partial Response after a Third Reintroduction of Platinum Doublets.

    Get PDF
    RRx-001 is a pan-active, systemically nontoxic epigenetic inhibitor under investigation in advanced non-small cell lung cancer, small-cell lung cancer and high-grade neuroendocrine tumors in a Phase II clinical trial entitled TRIPLE THREAT (NCT02489903), which reexposes patients to previously effective but refractory platinum doublets after treatment with RRx-001. The purpose of this case study is first to report a partial response to carboplatin and etoposide in a patient with small-cell lung cancer pretreated with RRx-001, indicating episensitization or resensitization by epigenetic mechanisms, and second to discuss the literature related to small-cell lung cancer and episensitization

    Plan for Demonstration of Online Monitoring for the Light Water Reactor Sustainability Online Monitoring Project

    Get PDF
    Condition based online monitoring technologies and development of diagnostic and prognostic methodologies have drawn tremendous interest in the nuclear industry. It has become important to identify and resolve problems with structures, systems, and components (SSCs) to ensure plant safety, efficiency, and immunity to accidents in the aging fleet of reactors. The Machine Condition Monitoring (MCM) test bed at INL will be used to demonstrate the effectiveness to advancement in online monitoring, sensors, diagnostic and prognostic technologies on a pilot-scale plant that mimics the hydraulics of a nuclear plant. As part of this research project, INL will research available prognostics architectures and their suitability for deployment in a nuclear power plant. In addition, INL will provide recommendation to improve the existing diagnostic and prognostic architectures based on the experimental analysis performed on the MCM test bed

    Light Water Reactor Sustainability Program Demonst

    Full text link
    The online monitoring of active components projec
    • …
    corecore