872 research outputs found

    Certain physical properties of cobalt and nickel borides

    Get PDF
    The temperature dependence of the electrical resistivity, the thermal conductivity, and the thermal emf of cobalt and nickel borides were studied. In the case of the nickel borides the magnetic susceptibility and the Hall coefficient were determined at room temperature. The results are discussed with allowance for the current carrier concentration, the effect of various mechanisms of current-carrier scattering and the location of the Fermi level in relation to the 3d band

    A two-level method for calculation of microstress on reinforced plates with circular hole in case of extension normal to principal direction

    Get PDF
    The stress concentration must often be examined at two levels while analyzing the stress condition of composite materials. The macroconcentration depends on the presence of holes, notches and other local areas of a construction. Typical dimensions of macroconcentration distribution areas are of the order of 0,01–0,1 m. Macroconcentration analysis is performed using the models of homogeneous material. Microstress concentration occurs in structurally inhomogeneous composites due to the structural heterogeneity of the composite. The sizes of concentration areas in regular structures are defined by the sizes of periodically recurring areas. In fibrous composites, such areas have the size of approximately 0,0001 m or less. This makes it necessary to use a two-level approach for the analysis of the stress concentration in the construction of composite materials. The aim of the present study was to compute the stress concentration in unidirectional reinforced composite plate with circular hole with respect to the volume ratio of the component materials in composite. The contour of the circular hole and its dependency on the structure of plates was calculated in order to study the behaviors of macro- and microstresses. The boundary conditions at a large distance from the hole are pressure, uniformly distributed on the plate. Also this problem is analyzed with the finite element method by package ANSYS. Macroconcentration is defined based on the solution of the plane problem of elasticity theory of the orthotropic material by the virtue of functions of a complex variable. The finite element method was used to investigate the stress distribution at microlevel. Boundary conditions that model the state of the specified twodimensional representative cell in the composite structure were established. The results demonstrated the macro- and microstresses and behavior of the orthotropic plate with a circular hole calculated for two different structures

    Energy flux and high-order statistics of hydrodynamic turbulence

    Full text link
    We use the Dyson-Wyld diagrammatic technique to analyze the infinite series for the correlation functions of the velocity in the hydrodynamic turbulence. We demonstrate the fundamental role played by the triple correlator of the velocity in determining the entire statistics of the hydrodynamic turbulence. All higher order correlation functions are expressed through the triple correlator. This is shown through the suggested {\it{triangular}} resummation of the infinite diagrammatic series for multi-point correlation functions. The triangular resummation is the next logical step after the Dyson-Wyld {{\it line}} resummation for the Green function and the double correlator. In particular, it allows us to explain why the inverse cascade of the two-dimensional hydrodynamic turbulence is close to Gaussian. Since the triple correlator dictates the flux of energy ε\varepsilon through the scales, we support the Kolmogorov-1941 idea that ε\varepsilon is one of the main characteristics of hydrodynamic turbulence

    A New Numerical Method for Calculation of Micro- Stress on Unidirectionally Reinforced Plates with Circular Hole In Case of Extension to a Principal Direction

    Get PDF
    The aim of the present study was to compute the stress concentration in reinforced composite plate with circular hole with respect to the volume ratio of the component materials in composite. The contour of the circular hole and its dependency on the structure of plates were calculated in order to study the behaviors of macro and micro-stresses. The boundary conditions at a large distance from the hole are pressure, uniformly distributed on the plate. Also this problem is analyzed with the finite element method by package ANSYS. The results demonstrated the macro and micro stress and behavior of the orthotropic plate with a circular hole calculated for two different structures

    Competitive 0 and {\pi} states in S/F multilayers: multimode approach

    Get PDF
    We have investigated the critical temperature behavior in periodic superconductor/ ferromagnet (S/F) multilayers as a function of the ferromagnetic layer thickness dfd_f and the interface transparency. The critical temperature Tc(df)T_c(d_f) exhibits a damped oscillatory behavior in these systems due to an exchange field in the ferromagnetic material. In this work we have performed TcT_c calculations using the self-consistent multimode approach, which is considered to be exact solving method. Using this approach we have derived the conditions of 0 or π\pi state realization in periodic S/F multilayers. Moreover, we have presented the comparison between the single-mode and multimode approaches and established the limits of applicability of the single-mode approximation, frequently used by experimentalists

    A New Numerical Procedure for Determination of Effective Elastic Constants in Unidirectional Composite Plates

    Get PDF
    In this paper a composite plate with similar unidirectional fibers is considered. Assuming orthotropic structure, theory of elasticity is used for investigating the stress concentration. Also, complex variable functions are utilized for solving the plane stress problems. Then the effective characteristics of this plate are studied numerically by using ANSYS software. In this research a volume element of fibers in square array is considered. In order to investigate the numerical finite element modeling, the modeling of a quarter unit cell is considered. For determining the elasticity coefficients, stress analysis is performed for considered volume with noting to boundary conditions. Effective elasticity and mechanical properties of composite which polymer epoxy is considered as its matrix, are determined theoretically and also by the proposed method in this paper with finite element method. Finally, the variations of mechanical properties with respect to fiber-volume fraction are studied

    Differential approximation for Kelvin-wave turbulence

    Full text link
    I present a nonlinear differential equation model (DAM) for the spectrum of Kelvin waves on a thin vortex filament. This model preserves the original scaling of the six-wave kinetic equation, its direct and inverse cascade solutions, as well as the thermodynamic equilibrium spectra. Further, I extend DAM to include the effect of sound radiation by Kelvin waves. I show that, because of the phonon radiation, the turbulence spectrum ends at a maximum frequency ω(ϵ3cs20/κ16)1/13\omega^* \sim (\epsilon^3 c_s^{20} / \kappa^{16})^{1/13} where ϵ\epsilon is the total energy injection rate, csc_s is the speed of sound and κ\kappa is the quantum of circulation.Comment: Prepared of publication in JETP Letter
    corecore