17,231 research outputs found

    Cloning and characterization of peptidylprolyl isomerase B in the silkworm, Bombyx mori

    Get PDF
    Peptidylprolyl isomerases (PPIases) play essential roles in protein folding and are implicated in immune response and cell cycle control. Our previous proteomic analysis indicated that Bombyx mori PPIases may be involved in anti- Bombyx mori nucleopolyhedrovirus (BmNPV) response. To help investigate this mechanism, we cloned a B. mori PPIase gene PPIB and characterized it by bioinformatic and experimental analysis. We found that the B. mori PPIB gene contains 4 exons and its cDNA is about of618 bp, encoding a protein of 205 amino acid residues (21474.41 Da) with an isoelectric point of 8.05. PPIB contains conserved and unique cyclophilin domain and belongs to cyclophilin superfamily. Its transcription could be detected by PCR in all the B. mori tissue samples, which is consistent withnormal PPIase expression pattern and their essential roles. It is localized in cytoplasm revealed by fluorescence microscopy. We also successfully expressed this protein in E. coli and characterized it by SDS-PAGE and Mass Spectrometry. The cloned DNA sequence was submitted to GenBank (EU583493)

    Spatio-Temporal Kronecker Compressive Sensing for Traffic Matrix Recovery

    Get PDF
    A traffic matrix is generally used by several network management tasks in a data center network, such as traffic engineering and anomaly detection. It gives a flow-level view of the network traffic volume. Despite the explicit importance of the traffic matrix, it is significantly difficult to implement a large-scale measurement to build an absolute traffic matrix. Generally, the traffic matrix obtained by the operators is imperfect, i.e., some traffic data may be lost. Hence, we focus on the problems of recovering these missing traffic data in this paper. To recover these missing traffic data, we propose the spatio-temporal Kronecker compressive sensing method, which draws on Kronecker compressive sensing. In our method, we account for the spatial and temporal properties of the traffic matrix to construct a sparsifying basis that can sparsely represent the traffic matrix. Simultaneously, we consider the low-rank property of the traffic matrix and propose a novel recovery model. We finally assess the estimation error of the proposed method by recovering real traffic

    Estimating carbon emissions from forest fires during 1980 to 1999 in Daxing’an Mountain, China

    Get PDF
    A large number of carbons are released into the atmosphere from forest fires per year, which has a significant influence on carbon cycle and storage. In this study, we examined the spatio-temporal patterns of forest fires from 1980 to 1999 in Daxing’an Mountain of Heilongjiang Province, China and estimated the carbon emissions from forest fires based on both field research and laboratory experiments. The results show that (1) burned areas of larch (Larix gmelinii Rupr.), Mongolian pine (Pinus sylvestris L. var. mongolica Litv.), white birch (Betula platyphylla Suk.), mixed broadleaved-conifer (L. gmelinii & B. platyphylla) and Mongolian oak (Quercus mongolica Fish.) forests were 437 947, 20 939, 142 527, 168 532 and 1 375 hm2 during 1980 to 1999 period, respectively. The fuel consumed based on these forests were 29.0 to 46.5, 16.7 to 26.5, 18.1 to 26.5, 31.9 to 51.4 and 24.5 to 40.3 Mg hm-2, respectively; (2) the total carbon emissions from forest fires of the forest types in Daxing’an Mountain was 3.8 to 5.9 Tg during this period. Two thirds of the total amounts were caused by larch forests, while 1/4 came from white birch forests and the rest from other forest types; (3) the amounts of CO2 released from forest fires for these 20 years were 13.9 to 21.6 Tg. The estimates were incomplete or could be low because the emissions from the burning of dead organic matter (litter, dead wood, etc.) were not included in this calculation and therefore, the net carbon balance was calculated.Key words: biomass, carbonaceous gases, CO2 emissions, forest fires

    Diversity of eukaryotic plankton of aquaculture ponds with Carassius auratus gibelio, using denaturing gradient gel electrophoresis

    Get PDF
    PCR-denaturing gradient gel electrophoresis (DGGE) and canonical correspondence analysis (CCA) were used to explore the relationship between eukaryotic plankton community succession and environmental factors in two aquaculture pond models with gibel carp Carassius auratus gibelio. The main culture species of pond 1 were gibel carp and grass carp, and the combined density was 46224 fingerling/ha (gibel carp/grass carp/silver carp/bighead carp, 17:4:6:1). The main culture species of pond 2 was gibel carp, and the combined density was 37551 fingerling/ha (gibel carp/silver carp/bighead carp, 52:1:1). Water samples were collected monthly. The results showed that the annual average concentrations of TP and PO_4-P in pond 1 were significantly higher than pond 2 (p>0.05). The concentration of chlorophyll a (chl a) has no significantly difference between pond 1 and pond 2. DGGE profiles of 18S rRNA gene fragments from the two ponds revealed that the diversity of eukaryotic plankton assemblages was highly variable. 91 bands and 71 bands were detected in pond 1 and pond 2, respectively. The average Shannon–Wiener index of pond 1 was significantly higher than pond 2. Canonical correspondence analysis (CCA) revealed that temperature played a key role in the structure of the eukaryotic plankton community in both ponds, but the nutrient concentration did not affect it. Our results suggest that DGGE method is a cost-effective way to gain insight into seasonal dynamics of eukaryotic plankton communities in culture ponds, and the increase in the number of filter-feeding silver carp and bighead carp could increase the diversity of the eukaryotic plankton community

    Effect of Relief-hole Diameter on Die Elastic Deformation during Cold Precision Forging of Helical Gears

    Get PDF
    During cold precision forging of helical gears, the die experiences high forming pressure resulting in elastic deformation of the die, a main factor affecting dimensional accuracy of a formed gear. The divided flow method in material plastic deformation is an effective way to reduce the forming force and the die pressure during cold precision forging of helical gears. In this study, by utilizing the flow-relief-hole method, a billet design with different initial diameters of the relief-hole is developed to improve the dimensional accuracy of cold forging gears. Three-dimensional Finite Element (FE) models are established to simulate the plastic deformation process of billet during cold precision forging of a helical gear and to determine the forming force acting on the die. Further models of die stress analysis are developed to examine the die elastic deformation and distribution of the displacement. Effects of the relief-hole diameters on die elastic deformation are studied. The results show that the elastic deformation of the die is different in the addendum, dedendum, and involute parts of forging gear using different relief-hole diameters. The die elastic deformation increases firstly and then decreases when the relief-hole diameter increases. The tooth portions are of larger elastic deformation and the peak value locates in the addendum. It shows the importance of optimizing the relief-hole diameter to minimize the dimensional inaccuracy of forging gears caused by the die elastic deformation

    Doping dependent evolution of magnetism and superconductivity in Eu1-xKxFe2As2 (x = 0-1) and temperature dependence of lower critical field Hc1

    Full text link
    We have synthesized the polycrystalline samples of Eu1-xKxFe2As2 (x = 0-1) and carried out systematic characterization using x-ray diffraction, ac & dc magnetic susceptibility, and electrical resistivity measurements. We have seen a clear signature of the coexistence of superconducting transition (Tc = 5.5 K) with SDW ordering in our under doped sample viz. x = 0.15. The spin density wave transition observed in EuFe2As2 get completely suppressed at x = 0.3 and superconductivity arises below 20 K. Superconducting transition temperature Tc increases with increase in K content and a maximum Tc = 33 K is reached for x = 0.5, beyond which it decreases again. The doping dependent T(x) phase diagram is extracted from the magnetic and electrical transport data. It is found that magnetic ordering of Eu-moments coexists with superconductivity up to x = 0.6. The isothermal magnetization data taken at 2 K for the doped samples suggest 2+ valence states of Eu ions. We also present the temperature dependence of the lower critical field Hc1 of superconducting polycrystalline samples. The value of Hc1(0) obtained for x = 0.3, 0.5, and 0.7 after taking the demagnetization factor into account is 248, 385, and 250 Oe, respectively. The London penetration depth {\lambda}(T) calculated from the lower critical field does not show exponential behaviour at low temperature, as would be expected for a fully gapped clean s-wave superconductor. In contrast, it shows a T2 power-law feature down to T = 0.4 Tc, as observed in Ba1-xKxFe2As2 and BaFe2-xCoxAs2.Comment: 17 pages, 10 figure

    Multiphase flow numerical simulation of ladle bottom powder injection

    Get PDF
    Numerical simulations were performed on bottom injection of calcium oxide particles through double nozzle porous bricks into a 300 t hot metal ladle. The distribution characteristics of the calcium oxide particles in the ladle were predicted and analyzed. The modeling results show that, when the bottom blown porous bricks are located symmetrically off-centre by 1 / 2 ladle bottom radius and the injection speed of the calcium oxide particles is 7 m / s, an optimum distribution of the calcium oxide particles in the hot metal bath in the ladle can be achieved. This will provide a reference for evaluating the feasibility of applying bottom injection of the calcium oxide powder into hot metal ladles for desulfurization in the actual production process
    • …
    corecore