38 research outputs found

    Attenuation of kainic acid-induced epilepsy by butyrate is associated with inhibition of glial activation

    Get PDF
    Purpose: To investigate the function and potential therapeutic relevance of butyrate in epilepsy using rat models of kainic acid (KA)-induced epilepsy.Methods: The neurotoxin KA was applied to rats and rat astrocytes to establish models of epilepsy in vivo and in vitro. Multiple parameters, including behavioural seizure scores, were evaluated in rats and rat astrocytes treated with KA alone or in combination with butyrate. Western blot was performed to examine the levels of phosphorylated extracellular signal-related kinase (p-ERK), proinflammatory cytokine (IL-1ß), and glial fibrillary acidic protein (GFAP).Results: Significant increases were observed in the seizure-related proteins p-ERK and GFAP and in the proinflammatory cytokine IL-1ß in KA-treated rats and rat astrocytes (p < 0.05). Butyrate treatment attenuated KA-induced epileptic behaviour in rats and significantly reduced the expression of p-ERK, GFAP, and IL-1ß in a dose-dependent manner (p < 0.05).Conclusion: Butyrate has potential as a treatment for epilepsy by inhibiting the activation of p-ERK, astrogliosis, and inflammation, which were induced by KA in rats and rat astrocytes.Keywords: Kainic acid, Epilepsy, Butyrate, Glial activation, Astrogliosi

    Analysis of vasoactive and oxidative stress indicators for evaluating the efficacy of continuous positive airway pressure, and relation of vasoactive and oxidative stress indicators and cardiac function in obstructive sleep Apnea Syndrome patients

    Get PDF
    Background: Obstructive Sleep Apnea Syndrome (OSAS) is a breathing disorder during sleep. The work was to evaluate the relationship between vasoactive and oxidative stress indicators and cardiac function in Obstructive Sleep Apnea Syndrome (OSAS) patients. Methods: OSAS patients (n=120) were treated with CPAP from May 2021 to June 2022. According to the clinical efficacy, the patients were divided into effective and ineffective groups. Vasoactive factors and oxidative stress indices were compared between the two groups to evaluate their clinical efficacy. The changes in cardiac function indices in the two groups were tested, and the correlation between vasoactive factors and oxidative stress indices and cardiac function was analysed. Results: The effective rate of CPAP was 63.33% (76/120). Ang II, ET-1, and MDA levels were lower, and the SOD level was higher in the effective group than in the ineffective group after treatment. The AUC of the four indicators was all greater than 0.75. LPWT and IVST values of the effective group were lower than the ineffective group. A positive correlation was identified between the levels of Ang II, ET-1, and MDA with LPWT, between levels of ET-1 and MDA with IVST, and a negative correlation between SOD with LPWT and IVST. Conclusions: CPAP treatment can effectively improve vascular activity and reduce the oxidative stress response in OSAS patients, and the combined detection of vasoactive factors and oxidative stress indicators is valuable for evaluating the efficacy of CPAP and is related to the cardiac function of patients

    Interfacial Chemical Effects of Amorphous Zinc Oxide/Graphene

    Get PDF
    Research on the preparation and performance of graphene composite materials has become a hotspot due to the excellent electrical and mechanical properties of graphene. Among such composite materials, zinc oxide/graphene (ZnO/graphene) composite films are an active research topic. Therefore, in this study, we used the vacuum thermal evaporation technique at different evaporation voltages to fabricate an amorphous ZnO/graphene composite film on a flexible polyethylene terephthalate (PET). The amorphous ZnO/graphene composite film inherited the great transparency of the graphene within the visible spectrum. Moreover, its electrical properties were better than those of pure ZnO but less than those of graphene, which is not consistent with the original theoretical research (wherein the performance of the composite films was better than that of ZnO film and slightly lower than that of graphene). For example, the bulk free charge carrier concentrations of the composite films (0.13, 1.36, and 0.47 × 1018 cm−3 corresponding to composite films with thicknesses of 40, 75, and 160 nm) were remarkably lower than that of the bare graphene (964 × 1018 cm−3) and better than that of the ZnO (0.10 × 1018 cm−3). The underlying mechanism for the abnormal electrical performance was further demonstrated by X-ray photoelectron spectroscopy (XPS) detection and first-principles calculations. The analysis found that chemical bonds were formed between the oxide (O) of amorphous ZnO and the carbon (C) of graphene and that the transfer of the π electrons was restricted by C=O and C-O-C bonds. Given the above, this study further clarifies the mechanism affecting the photoelectric properties of amorphous composite films

    Fluorine ion induced phase evolution of tin-based perovskite thin films: structure and properties

    Get PDF
    To study the effect of fluorine ions on the phase transformation of a tin-based perovskite, CsSnI3 x(F)x films were deposited by using thermal vacuum evaporation from a mixed powder of SnI2, SnF2 and CsI, followed by rapid vacuum annealing. The color evolution, structure, and properties of CsSnI3 xFx films aged in air were observed and analyzed. The results showed that the colors of the films changed from black to yellow, and finally presented as black again over time; the unstable B-g-CsSnI3 xFx phase transformed into the Y-CsSnI3 xFx phase, which is then recombined into the Cs2SnI6 xFx phase with the generation of SnO2 in air. Fluorine dopant inhibited the oxidation process. The postponement of the phase transformation is due to the stronger bonds between F and Sn than that between I and Sn. The color changing process of the CsSnI3 xFx films slowed that the hole concentrations increased and the resistivities decreased with the increase of the F dopant ratio. With the addition of SnF2, light harvesting within the visible light region was significantly enhanced. Comparison of the optical and electrical properties of the fresh annealed CsSnI3 xFx films showed that the band gaps of the aged films widened, the hole concentrations kept the same order, the hole mobilities reduced and therefore, the resistivities increased. The double layer Cs2SnI6 xFx phase also showed ‘p’ type semi-conductor properties, which might be due to the incomplete transition of Sn2+ to Sn4+, i.e. Sn2+ provides holes as the acceptor

    A Continuous Kilogram-Scale Process for the Manufacture of 7-Ethyltryptophol

    No full text

    The plasma mitochondrial DNA is an independent predictor for post-traumatic systemic inflammatory response syndrome.

    Get PDF
    BACKGROUND AND PURPOSE: Mitochondrial DNA (mtDNA), a newly identified damage-associated molecular pattern, has been observed in trauma patients, however, little is known concerning the relationship between plasma mtDNA levels and concrete post-traumatic complications, particularly systemic inflammatory response syndrome (SIRS). The aim of this study is to determine whether plasma mtDNA levels are associated with injury severity and cloud predict post-traumatic SIRS in patients with acute traumatic injury. PATIENTS AND METHODS: Eighty-six consecutive patients with acute traumatic injury were prospectively enrolled in this study. The plasma mtDNA concentration was measured by a real-time, quantitative PCR assay for the human ND2 gene. The study population's clinical and laboratory data were analyzed. RESULTS: The median plasma mtDNA was higher in trauma patients than in healthy controls (865.196 (251.042-2565.40)pg/ml vs 64.2147 (43.9049-80.6371)pg/ml, P<0.001) and was independently correlated with the ISS score (r=0.287, P<0.001). The plasma mtDNA concentration was also significantly higher in patients who developed post-traumatic SIRS than in patients who did not (1774.03 (564.870-10901.3)pg/ml vs 500.496 (145.415-1285.60)pg/ml, P<0.001). Multiple logistic regression analysis revealed that the plasma mtDNA was an independent predictors for post-traumatic SIRS (OR, 1.183 (95%CI, 1.015-1.379), P=0.032). Further ROC analysis demonstrated that a high plasma mtDNA level predicted post-traumatic SIRS with a sensitivity of 67% and a specificity of 76%, with a cut-off value of 1.3185 µg/ml being established, and the area under the ROC curves (AUC) was 0.725 (95% CI 0.613-0.837). CONCLUSIONS: Plasma mtDNA was an independent indictor with moderate discriminative power to predict the risk of post-traumatic SIRS

    Shrinkage Simulation of Holographic Grating Using Diffusion Model in PQ-PMMA Photopolymer

    No full text
    An extended model based on nonlocal polymerization-driven diffusion model is derived by introducing shrinkage process for describing photopolymerized dynamics in PQ-PMMA photopolymer. The kinetic parameters, polymerization rate and diffusion rate are experimentally determined to provide quantitative simulation. The numerical results show that the fringes at edge of grating are firstly shifted and consequently, it leads to a contrast reduction of holograms. Finally, theoretical results are experimentally checked by temporal evolution of diffraction efficiency, and the shrinkage coefficient 0.5% is approximately achieved under incident intensity 25.3mw/cm2. This work can enhance the applicability of diffusion model and contribute to the reasonable description of the grating formation in the photopolymer

    Shrinkage Simulation of Holographic Grating Using Diffusion Model in PQ-PMMA Photopolymer

    No full text
    An extended model based on nonlocal polymerization-driven diffusion model is derived by introducing shrinkage process for describing photopolymerized dynamics in PQ-PMMA photopolymer. The kinetic parameters, polymerization rate and diffusion rate are experimentally determined to provide quantitative simulation. The numerical results show that the fringes at edge of grating are firstly shifted and consequently, it leads to a contrast reduction of holograms. Finally, theoretical results are experimentally checked by temporal evolution of diffraction efficiency, and the shrinkage coefficient 0.5% is approximately achieved under incident intensity 25.3mw/cm2. This work can enhance the applicability of diffusion model and contribute to the reasonable description of the grating formation in the photopolymer

    Effects of Island-Coated PVdF-HFP Composite Separator on the Performance of Commercial Lithium-ion Batteries

    No full text
    The widespread industrialization of high-energy density commercial lithium-ion batteries has long been challenged by issues of safety and efficiency stemming from uncontrollable lithium dendritic growths. Here, an island-coated composite separator has been fabricated using a pre-swelling process with water-based dispersions to address the issue of dendrite growth. The pre-swelling of the polymer particle surface balances the contradiction between the high crystallinity and electrolyte compatibility showing high electrolyte wettability and electrolyte uptake ability. Furthermore, the point-to-point surface structure can balance the high interfacial adhesion of electrodes and anti-deformation ability well, which is beneficial for preventing ripple-shaped and pot-shaped deformation, smoothing the solid particle morphology of the electrode and achieving a steady interfacial structure for lithium diffusion in cells. This new strategy constructs a non-continuous novel structure, achieving greatly improved dendrite growth suppressing and cell interface stabilization. This paper has opened up a new method for the development of low cost, simple process and easy industry of the lithium-ion pouch cell with improved quality and efficiency
    corecore