13,993 research outputs found

    Localization and compactness of Operators on Fock Spaces

    Get PDF
    For 0<pβ‰€βˆž0<p\leq\infty, let FΟ†pF^{p}_\varphi be the Fock space induced by a weight function Ο†\varphi satisfying ddcφ≃ω0 dd^c \varphi \simeq \omega_0. In this paper, given p∈(0,1]p\in (0, 1] we introduce the concept of weakly localized operators on FΟ†p F^{p}_\varphi, we characterize the compact operators in the algebra generated by weakly localized operators. As an application, for 0<p<∞0<p<\infty we prove that an operator TT in the algebra generated by bounded Toeplitz operators with BMO\textrm{BMO} symbols is compact on FΟ†pF^p_\varphi if and only if its Berezin transform satisfies certain vanishing property at ∞\infty. In the classical Fock space, we extend the Axler-Zheng condition on linear operators TT, which ensures TT is compact on FΞ±pF^p_{\alpha} for all possible 0<p<∞0<p<\infty.Comment: 23 Page

    Flux-lattice melting in LaO1βˆ’x_{1-x}Fx_{x}FeAs: first-principles prediction

    Full text link
    We report the theoretical study of the flux-lattice melting in the novel iron-based superconductor LaO0.9F0.1FeAsLaO_{0.9}F_{0.1}FeAs and LaO0.925F0.075FeAsLaO_{0.925}F_{0.075}FeAs. Using the Hypernetted-Chain closure and an efficient algorithm, we calculate the two-dimensional one-component plasma pair distribution functions, static structure factors and direct correlation functions at various temperatures. The Hansen-Verlet freezing criterion is shown to be valid for vortex-liquid freezing in type-II superconductors. Flux-lattice meting lines for LaO0.9F0.1FeAsLaO_{0.9}F_{0.1}FeAs and LaO0.925F0.075FeAsLaO_{0.925}F_{0.075}FeAs are predicted through the combination of the density functional theory and the mean-field substrate approach.Comment: 5 pages, 4 figures, to appear in Phys. Rev.

    Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    Full text link
    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the 2D mean-field theory indicates that the quantum fluctuations are much more pronounced than those in 3D. In this work, we show that the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of 2D Bose gases and determine the ratio of the composite boson scattering length aBa_{\rm B} to the fermion scattering length a2Da_{\rm 2D}. We find aB≃0.56a2Da_{\rm B}\simeq 0.56 a_{\rm 2D}, in good agreement with the exact four-body calculation. We compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.Comment: Published versio

    Solid waste mixtures combustion in a circulating fluidized Bed: emission properties of NOx, Dioxin, and Heavy Metals

    Get PDF
    To efficiently and environment friendly combust the domestic garbage, sludge, and swill waste fuels, five different fuels are prepared by mixing the waste fuels together with coal, and grass biomass at different mixing ratios, and finally those fuels were combusted in a circulating fluidized bed (CFB) reactor. The emission performances of NOx, dioxin, and heavy metal during the combustion tests are studied. The results showed that a stable furnace temperature can be reached at approximately 850Β Β°C when combusting all studied mixed fuels, benefiting the thermal processes of sludge and domestic garbage and thus realizing the purpose of waste-to-fuel. In addition, the dioxin emissions are much lower than the emission standards, and NOx emissions could be reduced significantly by adjusting the ratio of waste fuels. However, the emissions of mercury, lead, and the combinations of chromium, tin, antimony, cupper and manganese components all exceeded the pollution control standard for hazardous wastes incineration, a further technology is required for heavy metal reductions to achieve the emission standards

    Phase transition in site-diluted Josephson junction arrays: A numerical study

    Full text link
    We numerically investigate the intriguing effects produced by random percolative disorder in two-dimensional Josephson-junction arrays. By dynamic scaling analysis, we evaluate critical temperatures and critical exponents with high accuracy. It is observed that, with the introduction of site-diluted disorder, the Kosterlitz-Thouless phase transition is eliminated and evolves into a continuous transition with power-law divergent correlation length. Moreover, genuine depinning transition and creep motion are studied, evidence for distinct creep motion types is provided. Our results not only are in good agreement with the recent experimental findings, but also shed some light on the relevant phase transitions.Comment: 7 pages, 8 figures, Phys. Rev. B (in press
    • …
    corecore