27 research outputs found

    The effects of low levels of aflatoxin B1 on health, growth performance and reproductivity in male rabbits

    Get PDF
    [EN] This study investigated the chronic effects of relatively low exposure to aflatoxin B1 (AFB1) on the growth performance, immune situation and reproduction in male rabbits. Bucks (n=32, 4.82±0.22 kg) were individually assigned to 4 treatments (8 replicates each) using a randomised complete block design. Four diets containing 0, 0.02, 0.05, and 0.1 mg AFB1/kg, were provided to bucks for 8 wk. Growth performance and semen quality were measured. Blood, organ and tissue samples were collected to measure haematological indices, liver function, organ weights and immune parameters. Compared to control, AFB1-contaminated diets reduced body weight and average daily gain (P<0.05), altered certain haematological indices and liver function with decreased monocytes percentage and mean corpuscular haemoglobin concentration, and increased plateletcrit and albumin (P<0.05), slightly impaired reproductive parameters with enhanced ratio of morphologically abnormal sperm cells at early stage and reduced post-stage acrosome integrity, testis weight and serum testosterone concentration (P<0.05), decreased immune function with reduced relative liver weight (%) and tumour necrosis factor-α levels in serum and liver tissue, and increased serum 8-hydroxy-2’-deoxyguanosine levels (P<0.05). Furthermore, bucks fed diets with relatively high AFB1 (0.05 and 0.1 mg AFB1/kg) had reduced red blood cell and haematocrit (P<0.05) in contrast with the low AFB1 group (0.02 mg AFB1/kg). In conclusion, diets containing 0.05 and 0.1 mg AFB1/kg had negative effects on bucks’ growth performance, haematology, reproductivity and immune function, whereas diet containing 0.02 mg AFB1/kg had only minor effects on the parameters measured.The study was funded by the Fundamental Research Funds for the Central Universities (XDJK2015C081).Sun, Y.; Dong, G.; E, G.; Liao, M.; Tao, L.; Lv, J. (2018). The effects of low levels of aflatoxin B1 on health, growth performance and reproductivity in male rabbits. World Rabbit Science. 26(2):123-133. https://doi.org/10.4995/wrs.2018.7433SWORD123133262Abdelaziz S.A., Hamada M.M. 2007. Phytic acid exposure alters AflatoxinB1-induced reproductive and oxidative toxicity in Albino Rats (Rattus norvegicus). eCAM, 6: 331-3471. https://doi.org/10.1093/ecam/nem137Abdel-Wahhab M.A., Nada S.A., Khalil F.A.2002. Physiological and toxicological responses in rats fed aflatoxin-contaminated diet with or without sorbent materials. Animal Feed Sci. Tech., 97: 209-219. https://doi.org/10.1016/S0377-8401(01)00342-XAbnet C.C. 2007.Carcinogenic food contaminants. Cancer Invest., 25: 189-196. https://doi.org/10.1080/07357900701208733Adedara I.A., Nanjappa M.K., Farombi E.O., Akingbemi B.T. 2014. Aflatoxin B1 disrupts the androgen biosynthetic pathway in rat Leydig cells. Food Chem. Toxicol., 65: 252-259. https://doi.org/10.1016/j.fct.2013.12.027Alm K., Dahlbom M., Saynajarvi M., Anderson M.A., Salkinoja-Salonen M.S., Anderson M.C. 2002. Impaired semen quality of AI bulls fed with moldy hay: a case report. Theriogenology, 58: 1497-1502. https://doi.org/10.1016/S0093-691X(02)01079-8Asare G.A., Bronz M., Naidoo V., Kew M.C. 2007. Interactions between aflatoxin B1 and dietary iron overload in hepatic mutagenesis. Toxicol., 234: 157-166. https://doi.org/10.1016/j.tox.2007.02.009Ataman M.B., Dönmez H.H., Dönmez N., Sur E., Bucak M.N., Çoyan, K. 2014. Protective effect of esterified glucomannan on aflatoxin-induced changes in testicular function, sperm quality, and seminal plasma biochemistry in rams. Theriogenology, 81: 373-380. https://doi.org/10.1016/j.theriogenology.2013.10.007Clarke R.N., Doerr J.A., Ottinger M.A. 1986. Relative importance of dietary aflatoxin and feed restriction on reproductive changes associated with aflatoxicosis in the maturing white leghorn male. Poul. Sci., 65: 2239-2245. https://doi.org/10.3382/ps.0652239Cotty P.J., Jaime-Garcia R. 2007. Influences of climate on aflatoxin producing fungi and aflatoxin contamination. Int. J. Food Microbiol., 199: 109-115. https://doi.org/10.1016/j.ijfoodmicro.2007.07.060David S.S., O'Shea V.L., Kundu S. 2007. Base-excision repair of oxidative DNA damage. Nature, 447: 941-950. https://doi.org/10.1038/nature05978Dönmez N., Keskin E. 2008. The effects of aflatoxin and glucomannan on some antioxidants and biochemical parameters in rabbits. Acta Vet. Beograd., 58: 307-313. https://doi.org/10.2298/AVB0804307DEgbunike G.N. 1982. Steroidogenic and spermatogenic potentials of the male rat after acute treatment with Aflatoxin B1. Andrologia, 14: 440-446. https://doi.org/10.1111/j.1439-0272.1982.tb02291.xEisa A.M.A., Metwally A.Y. 2011. Effect of glucomannan on haematological, coagulation and biochemical parameters in male rabbits fed aflatoxin-contaminated ration. World Mycotoxin J., 4: 183-188. https://doi.org/10.3920/WMJ2010.1273Ellis O., Smith J.P., Simpson B.K. 1991. Aflatoxins in food: occurrence, biosynthesis, effects on organisms, detection, and methods of control. Crit. Rev. Food. Sci., 30: 403-439. https://doi.org/10.1080/10408399109527551European Commission. 2003. Commission directive 2003/100/EC of 31 October 2003 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council on undesirable substances in animal feed. No. 2003/100/EC, 31 October 2003. Off. J. Eur. Comm., 1 November 2003, L 285, 33-37.Ewuola E.O. 2008. Organ traits and histopathology of rabbits fed varied levels of dietary fumonisin B1. J. Anim. Physiol. An. N., 93: 726-731. https://doi.org/10.1111/j.1439-0396.2008.00862.xEwuola E.O., Egbunike G.N. 2010. Effects of dietary fumonisin B1 on the onset of puberty, semen quality, fertility rates and testicular morphology in male rabbits. Reproduction, 139: 439-445. https://doi.org/10.1530/REP-09-0077Ewuola E.O., Jimoh O.A., Bello A.D., Bolarinwa A.O. 2014. Testicular biochemicals, sperm reserves and daily sperm production of West African dwarf bucks fed varied levels of dietary aflatoxin. Anim. Reprod. Sci., 148: 182-187. https://doi.org/10.1016/j.anireprosci.2014.05.010Fan Y., Li X., Zhao L., Jia Y., Ji C., Ma Q., Chen Y., Wang L. 2012. Investigation on contamination situation of aflatoxin in detected feeds and feedstuffs in Beijing area. Scientia Agricultura Sinica, 45: 5102-5109.Fan Y., Zhao L., Ma Q., Li X., Shi H., Zhou T., Zhang J., Ji C. 2013. Effects of Bacillus subtilis ANSB060 on growth performance, meat quality and aflatoxin residues in broilers fed moldy peanut meal naturally contaminated with aflatoxins. Food Chem. Toxicol., 59: 748-753. https://doi.org/10.1016/j.fct.2013.07.010Faridha A., Faisal K., Akbarsha M.A. 2006. Duration-dependent histopathological and histometric changes in the testis of aflatoxin-treated mice. J. Endocrin. Reprod., 10: 117-133.Gholami-Ahangaran M., Zia-Jahromi N. 2013. Nanosilver effects on growth parameters in experimental aflatoxicosis in broiler chickens. Toxicol. Ind. Health, 29: 121-125. https://doi.org/10.1177/0748233711425078Gong Y., Hounsa A., Egal S., Turner P.C., Sutcliffe A.E., Hall A.J., Cardwell K., Wild C.P. 2004. Post-weaning exposure to aflatoxin results in impaired child growth: a longitudinal study in Benin. Environ. Health Perspect., 112: 1334-1338. https://doi.org/10.1289/ehp.6954Guerre P., Eeckhoutte C., Larrieu G., Burgat V., Galtier P. 1996. Dose-related effect of aflatoxin B1 on liver drug metabolizing enzymes in rabbit. Toxicology, 108: 39-48.https://doi.org/10.1016/S0300-483X(95)03269-LGuerre P., Larrieu G., Burgat V., Galtier P. 1999. Cytochrome P450 decreases are correlated to increased microsomal oxidative damage in rabbit liver and primary cultures of rabbit hepatocytes exposed to AFB1. Toxicol. Lett., 104: 117-125.https://doi.org/10.1016/S0378-4274(98)00352-XGuindon-Kezis K.A., Mulder J.E., Massey T.E. 2014. In vivo treatment with aflatoxin B1 increases DNA oxidation, base excision repair activity and 8-oxoguanine DNA glycosylase 1 levels in mouse lung. Toxicology, 321: 21-26. https://doi.org/10.1016/j.tox.2014.03.004Hancock K.D., Coleman E.S., Tao Y.X., Morrison E.E., Braden T.D., Kemppainen B.W., Akingbemi B.T. 2009. Genistein decreases androgen biosynthesis in rat Leydig cells by interference with luteinizing hormone-dependent signaling. Toxicol. Lett., 184: 169-175. https://doi.org/10.1016/j.toxlet.2008.11.005Issac A.A., Manjunatha K.N., Ebenezer O.F., Benson T.A. 2014. Aflatoxin B1 disrupts the androgen biosynthetic pathway in rat Leydig cells. Food Chem. Toxicol., 65: 252-259. https://doi.org/10.1016/j.fct.2013.12.027Kaneko J.J., Harvey J.W., Bruss M. 1997. Serum protein and the dysproteinemias. In clinical biochemistry of domestic animals, 5th ed.; Academic press: San Diego, CA, USA; pp. 117-137. https://doi.org/10.1016/B978-012396305-5/50006-3KĂ€renlampi S.O. 1987. Mechanism of cytotoxicity of aflatoxin B1: role of cytochrome P1-450. Biochem. Bioph. Res. Co., 145: 845-860. https://doi.org/10.1016/0006-291X(87)91043-6Kecici T., Demet Ö., Oguz H. 1995. Single and combined effects of dietary aflatoxin and adsorbent (Mycofix plus) on some hematological and serum biochemical parameters of broiler chickens. J. Vet. Sci., 11: 95-101.KovĂĄcs M., Tornyos G., Matics Zs., Kametler L., Rajli V., BodnĂĄr Zs., KulcsĂĄr M., Huszenicza Gy., Keresztes Zs., Cseh S. 2011. Subsequent effect of subacute T-2 toxicosis on spermatozoa, seminal plasma and testosterone production in rabbits. Animal, 5: 1563-1569. https://doi.org/10.1017/S1751731111000644Manafi M., Murthy H.N.N., Mohan K., Narayana H.D.S. 2012. Evaluation of different mycotoxin binders on broiler breeders induced with aflatoxin B1: effects on fertility, hatchability, embryonic mortality, residues in egg and semen quality. Global Vet., 8: 643-648.Marin D.E., TaranuI., Bunaciu R.P., Pascale F., Tudor D.S., Avram N., Sarca M., Cureu I., Criste R.D., Suta V., Oswald I.P. 2002. Changes in performance, blood parameters, humoral and cellular immune responses in weanling piglets exposed to low doses of aflatoxin. J. Anim. Sci., 80: 1250-1257. https://doi.org/10.2527/2002.8051250xMohanamba T., Rao M.R., Habibi S.M.M. 2007. Aflatoxin contamination in animal feeds. Ind. Vet. J., 84:416.3Morton D. 1988. The use of rabbits in male reproductive toxicology. Environ. Health Persp., 77: 5-9. https://doi.org/10.1289/ehp.88775Oguz H., Kurtoglu V. 2000. Effect of clinoptilolite on performance of broiler chickens during experimental aflatoxicosis. Brit. Poult. Sci., 41: 512-517. https://doi.org/10.1080/713654953Peters L.P., Teel R.W. 2003. Effect of high sucrose diet on liver enzyme content and activity and aflatoxin B1-induced mutagenesis. InVivo.,17: 205-210.Prabu P.C., Dwivedi P., Sharma A.K. 2013. Toxico pathological studies on the effects of aflatoxin B1, ochratoxin A and their interaction in New Zealand White rabbits. Exp. Toxicol. Pathol., 65: 277-286. https://doi.org/10.1016/j.etp.2011.09.003Richard J.L., Thurston J.R. 1975. Effect of aflatoxin on phagocytosis of Aspergillus fumigatus spores by rabbit alveolar macrophages. Appl. Microbiol., 30: 44-47.Rustemeyer S.M., Lamberson W.R., Ledoux D.R., Rottinghaus G.E., Shaw D.P., Cockrum R.R., Kessler K.L., Austin K.J., Cammack K.M. 2014. Effects of dietary aflatoxin on the health and performance of growing barrows. J. Anim. Sci., 88: 3624-3630.https://doi.org/10.2527/jas.2009-2663Salem M.H., Kamel K.I., Yousef M.I., Hassan G.A., ELNouty F.D. 2001. Protective role of ascorbic acid to enhance semen quality of rabbits treated with sublethal doses of aflatoxin B1. Toxicology, 162: 209-218.https://doi.org/10.1016/S0300-483X(01)00366-3Sherrill J.D., Sparks M., Dennis J., Mansour M., Kemppainen B.W., Bartol F.F., Morrison E.E., Akingbemi B.T. 2010. Developmental exposures of male rats to soy isoflavones impact Leydig cell differentiation. Biol. Reprod., 83: 488-501. https://doi.org/10.1095/biolreprod.109.082685Soliman K.M., El-Faramawy A.A., Zakaria S.M., Mekkawy S.H. 2001. Monitoring the preventive effect of hydrogen peroxide and Îł-radiation of aflatoxicosis in growing rabbits and the effect of cooking on aflatoxin residues. J. Agric. Food Chem., 49: 3291-3295. https://doi.org/10.1021/jf0010735Tung H.T., Donaldson W.E., Hamilton P.B. 1972. Altered lipid transport during aflatoxicosis. Toxicol. Appl. Pharmacol., 22: 97-104. https://doi.org/10.1016/0041-008X(72)90229-3Verma R.J., Mathuria N. 2010. Curcumin ameliorates aflatoxininduced changes in caput and cauda epididymis of mice. Int. J. Fertil. Steril., 4: 17-22.Waal Malefyt R., Abrams J., Bennett B., Figdor C.G., de Vries J.E. 1991. Interleukin 10 (IL-10) inhibits cytokine synthesis: An auto regulatory role of IL-10 produced by monocytes. J. Exp. Med. 174: 1209-1220. https://doi.org/10.1084/jem.174.5.1209Weaver A.C., See M.T., Hansen J.A., Kim Y.B, De Souza A.L.P., Teena F.M., Kim S.W. 2013. The use of feed additives to reduce the effects of aflatoxin and deoxynivalenol on pig growth, organ health and immune status during chronic exposure. Toxins, 5: 1261-1281. https://doi.org/10.3390/toxins5071261Williams J.H., Phillips T.D., Jolly P.E., Stiles J.K., Jolly C.M. Aggarwal D. 2004. Human aflatoxicosis in developing countries; a review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr., 80: 1106-1122. https://doi.org/10.1093/ajcn/80.5.1106Yang J., Bai F., Zhang K., Bai S., Peng X., Ding X., Li Y., Zhang J., Zhao L. 2012. Effects of feeding corn naturally contaminated with aflatoxin B1 and B2 on hepatic functions of broilers. Poul. Sci., 91: 2792-2801. https://doi.org/10.3382/ps.2012-02544Yegani M., Smith T.K., Leeson S., Boermans H.J. 2006. Effects of feeding grains naturally contaminated with Fusarium mycotoxins on performance and metabolism of broiler breeders. Poult. Sci., 85: 1541-1549. https://doi.org/10.1093/ps/85.9.1541Yu F.L. 1982. Studies on the mechanism of aflatoxin B1 inhibition of the rat liver nucleolar RNA synthesis. J. Biol. Chem., 256: 3292-3297.Yunus A.W., Razzazi-Fazeli E., Bohm J. 2011. Aflatoxin B1 in affecting broiler's performance, immunity, and gastrointestinal tract: a review of history and contemporary issues. Toxins, 3: 566-590. https://doi.org/10.3390/toxins306056

    Isoflurane Preconditioning at Clinically Relevant Doses Induce Protective Effects of Heme Oxygenase-1 on Hepatic Ischemia Reperfusion in Rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of heme oxygenase-1 (HO-1) has been proved to reduce damages to the liver in ischemia reperfusion injury. The objective of present study was to determine whether clinic relevant doses of isoflurane treatment could be sufficient to activate HO-1 inducing, which confers protective effect against hepatic ischemia-reperfusion injury.</p> <p>Methods</p> <p>The hepatic artery and portal vein to the left and the median liver lobes of forty male Sprague-Dawley rats were occluded for 60 minutes. Reperfusion was allowed for 4 hours before the animal subjects were sacrificed. Six groups (n = 12) were included in the study. A negative control group received sham operation and positive control group a standard ischemia-reperfusion regimen. The third group was pretreated with isoflurane prior to the ischemia-reperfusion. The fourth group received an HO-1 inhibitor zinc protoporphyrin (Znpp) prior to the isoflurane pretreatment and the ischemia-reperfusion. The fifth group received Znpp alone before ischemia-reperfusion procedure, and the sixth group was administrated with a HO-1 inducer hemin prior to IR. HO-1 in the liver was measured using an enzymatic activity assay, a Western blot analysis, as well as immunohistochemical method. Extent of liver damage was estimated by determination of the serum transaminases, liver lipid peroxidation and hepatic histology. Infiltration of the liver by neutrophils was measured using a myeloperoxidase activity assay. TNFα mRNA in the liver was measured using RT-PCR.</p> <p>Results</p> <p>Isoflurane pretreatment significantly attenuated the hepatic injuries and inflammatory responses caused by the ischemia reperfusion. Selectively inhibiting HO-1 with ZnPP completed blocked the protective effects of isoflurane. Inducing HO-1 with hemin alone produced protective effects similar in magnitude to that of isoflurane.</p> <p>Conclusions</p> <p>Clinic relevant doses of isoflurane attenuate ischemia reperfusion injury in rats by increasing the HO-1 expression and activity.</p

    exactquantumscatteringstudyofthed2sds2reaction

    No full text
    The quantum scattering dynamics calculations are carried out for the exchange and abstraction processes in the D(~2S)+DS(~2Π) reaction by the time-dependent wave-packet (TDWP) method. These calculations are based on the high-quality ab initio potential energy surface of the reacting system. The reaction probabilities and integral cross sections are obtained in the collision energy (Ecol) range of 0.0-2.0 eV for the reactant DS initially in the ground state and the first vibrationally excited state. We take the Coriolis coupling (CC) effect into account and present the comparison between the CC and the centrifugal sudden (CS) approximation calculation. The dynamics results show that the initial vibrational excitation of DS enhances both abstraction and exchange processes except that it has little effect on the abstraction cross section in the high energy region

    exactquantumscatteringstudyofthed2sds2reaction

    No full text
    The quantum scattering dynamics calculations are carried out for the exchange and abstraction processes in the D(~2S)+DS(~2Π) reaction by the time-dependent wave-packet (TDWP) method. These calculations are based on the high-quality ab initio potential energy surface of the reacting system. The reaction probabilities and integral cross sections are obtained in the collision energy (Ecol) range of 0.0-2.0 eV for the reactant DS initially in the ground state and the first vibrationally excited state. We take the Coriolis coupling (CC) effect into account and present the comparison between the CC and the centrifugal sudden (CS) approximation calculation. The dynamics results show that the initial vibrational excitation of DS enhances both abstraction and exchange processes except that it has little effect on the abstraction cross section in the high energy region

    CAD-based Automatic Modeling Method for Geant4 geometry model Through MCAM

    No full text
    Geant4 is a widely used Monte Carlo transport simulation package. Before calculating using Geant4, the calculation model need be established which could be described by using Geometry Description Markup Language (GDML) or C++ language. However, it is time-consuming and error-prone to manually describe the models by GDML. Automatic modeling methods have been developed recently, but there are some problem existed in most of present modeling programs, specially some of them were not accurate or adapted to specifically CAD format. To convert the GDML format models to CAD format accurately, a Geant4 Computer Aided Design (CAD) based modeling method was developed for automatically converting complex CAD geometry model into GDML geometry model. The essence of this method was dealing with CAD model represented with boundary representation (B-REP) and GDML model represented with constructive solid geometry (CSG). At first, CAD model was decomposed to several simple solids which had only one close shell. And then the simple solid was decomposed to convex shell set. Then corresponding GDML convex basic solids were generated by the boundary surfaces getting from the topological characteristic of a convex shell. After the generation of these solids, GDML model was accomplished with series boolean operations. This method was adopted in CAD/Image-based Automatic Modeling Program for Neutronics & Radiation Transport (MCAM), and tested with several models including the examples in Geant4 install package. The results showed that this method could convert standard CAD model accurately, and can be used for Geant4 automatic modeling

    ZNF750 inhibits the proliferation and invasion of melanoma cells through modulating the Wnt/b-catenin signaling pathway

    No full text
    Introduction. The abnormal expression of Zinc Finger Protein 750 (ZNF750) has been reported in neoplastic diseases. This study investigated the functional role of ZNF750 in the progression of melanoma. Material and methods. Quantitative real-time PCR and immunohistochemistry (IHC) were performed to detect the expression levels of ZNF750 in patients diagnosed with primary cutaneous malignant melanoma. The correlation between clinical-pathological features and ZNF750 expression were clarified. Cell Counting Kit-8 (CCK-8), colony formation and transwell assays were used to explore the effects of ZNF750 on the proliferation, colony formation, migration and invasion of melanoma cells. Western blot assay was used to evaluate the effects of ZNF750 on regulating epithelial-mesenchymal transition (EMT) related proteins. Results. ZNF750 expression was down-regulated in human melanoma tissues and cells, and correlated with the clinical-pathological features including tumor size, lymph node metastasis, and Clark classification in patients with melanoma. In addition, overexpression of ZNF750 decreased the proliferation, invasion and suppressed EMT of melanoma cells, whereas ZNF750 depletion showed the opposite effects. Importantly, mechanistic analyses implied that upregulation of ZNF750 inhibited the expression of b-catenin and the downstream targets (cyclin D1, c-Myc, Bcl-2, MMP2 and MMP9), indicating it could block the activation of Wnt/b-catenin pathway. Consistently, knockdown of ZNF750 led to the opposite results. Conclusions. Together, ZNF750 serves as a tumor suppressor for the development and progression of melanoma through regulating the Wnt/b-catenin pathway. This study confirms the involvement of ZNF750 in melanoma progression and may provide a promising therapeutic target for the treatment of melanoma

    WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection

    No full text
    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate
    corecore