221 research outputs found

    Drug susceptibility testing of clinical isolates of streptococci and enterococci by the Phoenix automated microbiology system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug resistance is an emerging problem among streptococcal and enterococcal species. Automated diagnostic systems for species identification and antimicrobial susceptibility testing (AST) have become recently available. We evaluated drug susceptibility of clinical isolates of streptococci and enterococci using the recent Phoenix system (BD, Sparks, MD). Diagnostic tools included the new SMIC/ID-2 panel for streptococci, and the PMIC/ID-14 for enterococci. Two-hundred and fifty isolates have been investigated: β-hemolytic streptococci (n = 65), <it>Streptococcus pneumoniae </it>(n = 50), viridans group streptococci (n = 32), <it>Enterococcus faecium </it>(n = 40), <it>Enterococcus faecalis </it>(n = 43), other catalase-negative cocci (n = 20). When needed, species ID was determined using molecular methods. Test bacterial strains were chosen among those carrying clinically-relevant resistance determinants (penicillin, macrolides, fluoroquinolones, glycopeptides). AST results of the Phoenix system were compared to minimal inhibitory concentration (MIC) values measured by the Etest method (AB Biodisk, Solna, Sweden).</p> <p>Results</p> <p>Streptococci: essential agreement (EA) and categorical agreement (CA) were 91.9% and 98.8%, respectively. Major (ME) and minor errors (mE) accounted for 0.1% and 1.1% of isolates, respectively. No very major errors (VME) were produced. Enterococci: EA was 97%, CA 96%. Small numbers of VME (0.9%), ME (1.4%) and mE (2.8%) were obtained. Overall, EA and CA rates for most drugs were above 90% for both genera. A few VME were found: a) teicoplanin and high-level streptomycin for <it>E. faecalis</it>, b) high-level gentamicin for <it>E. faecium</it>. The mean time to results (± SD) was 11.8 ± 0.9 h, with minor differences between streptococci and enterococci.</p> <p>Conclusion</p> <p>The Phoenix system emerged as an effective tool for quantitative AST. Panels based on dilution tests provided rapid and accurate MIC values with regard to clinically-relevant streptococcal and enterococcal species.</p

    Antimicrobial activity of aztreonam in combination with old and new β-lactamase inhibitors against mbl and esbl co-producing gram-negative clinical isolates: Possible options for the treatment of complicated infections

    Get PDF
    none14noMetallo-β-lactamases (MBLs) are among the most challenging bacterial enzymes to over-come. Aztreonam (ATM) is the only β-lactam not hydrolyzed by MBLs but is often inactivated by co-produced extended-spectrum β-lactamases (ESBL). We assessed the activity of the combination of ATM with old and new β-lactamases inhibitors (BLIs) against MBL and ESBL co-producing Gram-negative clinical isolates. Six Enterobacterales and three non-fermenting bacilli co-producing MBL and ESBL determinants were selected as difficult-to-treat pathogens. ESBLs and MBLs genes were characterized by PCR and sequencing. The activity of ATM in combination with seven different BLIs (clavulanate, sulbactam, tazobactam, vaborbactam, avibactam, relebactam, zidebactam) was assessed by microdilution assay and time–kill curve. ATM plus avibactam was the most effective combination, able to restore ATM susceptibility in four out of nine tested isolates, reaching in some cases a 128-fold reduction of the MIC of ATM. In addition, relebactam and zidebactam showed to be effective, but with lesser reduction of the MIC of ATM. E. meningoseptica and C. indologenes were not inhibited by any ATM–BLI combination. ATM–BLI combinations demonstrated to be promising against MBL and ESBL co-producers, hence providing multiple options for treatment of related infections. However, no effective combination was found for some non-fermentative bacilli, suggesting the presence of additional resistance mechanisms that complicate the choice of an active therapy.openMorroni G.; Bressan R.; Fioriti S.; D'Achille G.; Mingoia M.; Cirioni O.; Di Bella S.; Piazza A.; Comandatore F.; Mauri C.; Migliavacca R.; Luzzaro F.; Principe L.; Lagatolla C.Morroni, G.; Bressan, R.; Fioriti, S.; D'Achille, G.; Mingoia, M.; Cirioni, O.; Di Bella, S.; Piazza, A.; Comandatore, F.; Mauri, C.; Migliavacca, R.; Luzzaro, F.; Principe, L.; Lagatolla, C

    Identifying population thresholds for flowering plant reproductive success: the marsh gentian (Gentiana pneumonanthe) as a flagship species of humid meadows and heathland

    Get PDF
    The threshold below which population declines impact the effectiveness of plant reproduction is essential for the identification of populations that can no longer spontaneously recover following habitat management or restoration, below the minimum viable population (MVP) size. We hypothesized that risk of reproductive limitation can be evaluated from combined analysis of pollen activity, ovule fertilization and germination in the context of population demographics and fragmentation. The marsh gentian (Gentiana pneumonanthe), a rare emblematic species of European heathland and fen, was investigated at the southern limit of its range in eighteen populations encompassing one to several hundred thousand individuals, spanning small fragments to extensive well-preserved areas. An index of habitat fragmentation was determined from GIS; field surveys determined the ratio of juvenile to reproductive age states; fluorescence microscopy of pistils determined, for each population, the proportion of flowers exhibiting active pollen tube growth. Analysis of seed lots determined the ovule fertilization rate and seed germination capacity. Some of the small populations occupying restricted habitat fragments showed high rates of pollination (100%) and \ue2\u80\u98normal\ue2\u80\u99 age state demographics. However, reproductive characters all exhibited exponential rise to maximum relationships with population size, indicating clear tipping points (for pollination, at a threshold of 7 reproductive adults, and for ovule fertilization rate and germination at 42 reproductive adults). Thus although small populations may set seed, exhibit a \ue2\u80\u98normal\ue2\u80\u99 age state structure, and may appear viable, reproductive effectiveness declines when population size falls below 42 generative individuals and < 7 is an indicator of strong limitation. Although many remnant populations of G. pneumonanthe are in the order of 50\ue2\u80\u93150 individuals these should be not be considered as MVPs; they are on the brink of calamity

    Failure of levofloxacin treatment in community-acquired pneumococcal pneumonia

    Get PDF
    BACKGROUND: Streptococcus pneumoniae is the leading cause of community-acquired pneumonia (CAP). High global incidence of macrolide and penicillin resistance has been reported, whereas fluoroquinolone resistance is uncommon. Current guidelines for suspected CAP in patients with co-morbidity factors and recent antibiotic therapy recommend initial empiric therapy using one fluoroquinolone or one macrolide associated to other drugs (amoxicillin, amoxicillin/clavulanate, broad-spectrum cephalosporins). Resistance to fluoroquinolones is determined by efflux mechanisms and/or mutations in the parC and parE genes coding for topoisomerase IV and/or gyrA and gyrB genes coding for DNA gyrase. No clinical cases due to fluoroquinolone-resistant S. pneumoniae strains have been yet reported from Italy. CASE PRESENTATION: A 72-year-old patient with long history of chronic obstructive pulmonary disease and multiple fluoroquinolone treatments for recurrent lower respiratory tract infections developed fever, increased sputum production, and dyspnea. He was treated with oral levofloxacin (500 mg bid). Three days later, because of acute respiratory insufficiency, the patient was hospitalized. Levofloxacin treatment was supplemented with piperacillin/tazobactam. Microbiological tests detected a S. pneumoniae strain intermediate to penicillin (MIC, 1 mg/L) and resistant to macrolides (MIC >256 mg/L) and fluoroquinolones (MIC >32 mg/L). Point mutations were detected in gyrA (Ser81-Phe), parE (Ile460-Val), and parC gene (Ser79-Phe; Lys137-Asn). Complete clinical response followed treatment with piperacillin/tazobactam. CONCLUSION: This is the first Italian case of community-acquired pneumonia due to a fluoroquinolone-resistant S. pneumoniae isolate where treatment failure of levofloxacin was documented. Molecular analysis showed a group of mutations that have not yet been reported from Italy and has been detected only twice in Europe. Treatment with piperacillin/tazobactam appears an effective means to inhibit fluoroquinolone-resistant strains of S. pneumoniae causing community-acquired pneumonia in seriously ill patients

    Serum albumin and osmolality inhibit Bdellovibrio bacteriovorus predation in human serum

    Get PDF
    We evaluated the bactericidal activity of Bdellovibrio bacteriovorus, strain HD100, within blood sera against bacterial strains commonly associated with bacteremic infections, including E. coli, Klebsiella pneumoniae and Salmonella enterica. Tests show that B. bacteriovorus HD100 is not susceptible to serum complement or its bactericidal activity. After a two hour exposure to human sera, the prey populations decreased 15- to 7,300-fold due to the serum complement activity while, in contrast, the B. bacteriovorus HD100 population showed a loss of only 33%. Dot blot analyses showed that this is not due to the absence of antibodies against this predator. Predation in human serum was inhibited, though, by both the osmolality and serum albumin. The activity of B. bacteriovorus HD100 showed a sharp transition between 200 and 250 mOsm/kg, and was progressively reduced as the osmolality increased. Serum albumin also acted to inhibit predation by binding to and coating the predatory cells. This was confirmed via dot blot analyses and confocal microscopy. The results from both the osmolality and serum albumin tests were incorporated into a numerical model describing bacterial predation of pathogens. In conclusion, both of these factors inhibit predation and, as such, they limit its effectiveness against pathogenic prey located within sera

    Strategies for preventing group B streptococcal infections in newborns: A nation-wide survey of Italian policies

    Get PDF

    Extended spectrum beta lactamase and carbapenemase determinants in clinically relevant enterobacteria and nonfermenting Gram-negative rods.

    No full text
    Faramacoresistenza dei patogeni Gram-negativi. Basi genetiche, biochimiche, epidemiologia, implicazioni clinich
    corecore