42 research outputs found

    Superinfection by Discordant Subtypes of HIV-1 Does Not Enhance the Neutralizing Antibody Response against Autologous Virus

    Get PDF
    Recent studies have demonstrated that both the potency and breadth of the humoral anti-HIV-1 immune response in generating neutralizing antibodies (nAbs) against heterologous viruses are significantly enhanced after superinfection by discordant HIV-1 subtypes, suggesting that repeated exposure of the immune system to highly diverse HIV-1 antigens can significantly improve anti-HIV-1 immunity. Thus, we investigated whether sequential plasma from these subjects superinfected with discordant HIV-1 subtypes, who exhibit broad nAbs against heterologous viruses, also neutralize their discordant early autologous viruses with increasing potency. Comparing the neutralization capacities of sequential plasma obtained before and after superinfection of 4 subjects to those of matched plasma obtained from 4 singly infected control subjects, no difference in the increase in neutralization capacity was observed between the two groups (p = 0.328). Overall, a higher increase in neutralization over time was detected in the singly infected patients (mean change in IC50 titer from first to last plasma sample: 183.4) compared to the superinfected study subjects (mean change in IC50 titer from first to last plasma sample: 66.5). Analysis of the Breadth-Potency Scores confirmed that there was no significant difference in the increase in superinfected and singly infected study subjects (p = 0.234). These studies suggest that while superinfection by discordant subtypes induces antibodies with enhanced neutralizing breadth and potency against heterologous viruses, the potency to neutralize their autologous viruses is not better than those seen in singly infected patients

    Especiação e seus mecanismos: histórico conceitual e avanços recentes

    Full text link

    Non-Neutralizing Antibodies Directed against HIV and Their Functions

    No full text
    B cells produce a plethora of anti-HIV antibodies (Abs) but only few of them exhibit neutralizing activity. This was long considered a profound limitation for the enforcement of humoral immune responses against HIV-1 infection, especially since these neutralizing Abs (nAbs) are extremely difficult to induce. However, increasing evidence shows that additional non-neutralizing Abs play a significant role in decreasing the viral load, leading to partial and sometimes even total protection. Mechanisms suspected to participate in protection are numerous. They involve the Fc domain of Abs as well as their Fab part, and consequently the induced Ab isotype will be determinant for their functions, as well as the quantity and quality of the Fc-receptors (FcRs) expressed on immune cells. Fc-mediated inhibitory functions, such as Ab-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, aggregation, and even immune activation have been proposed. However, as for nAbs, the non-neutralizing activities are limited to a subset of anti-HIV Abs. An improved in-depth characterization of the Abs displaying these functional responses is required for the development of new vaccination strategies, which aim to selectively trigger the B cells able to induce the right functional Ab combinations both at the right place and at the right time. This review summarizes our current knowledge on non-neutralizing functional inhibitory Abs and discusses the potential benefit of inducing them via vaccination. We also provide new insight into the roles of the FcγR-mediated Ab therapeutics in clinical trials for HIV diseases

    Epitope Mapping of Conformational V2-specific Anti-HIV Human Monoclonal Antibodies Reveals an Immunodominant Site in V2

    Get PDF
    <div><p>In the case-control study of the RV144 vaccine trial, the levels of antibodies to the V1V2 region of the gp120 envelope glycoprotein were found to correlate inversely with risk of HIV infection. This recent demonstration of the potential role of V1V2 as a vaccine target has catapulted this region into the focus of HIV-1 research. We previously described seven human monoclonal antibodies (mAbs) derived from HIV-infected individuals that are directed against conformational epitopes in the V1V2 domain. In this study, using lysates of SF162 pseudoviruses carrying V1V2 mutations, we mapped the epitopes of these seven mAbs. All tested mAbs demonstrated a similar binding pattern in which three mutations (F176A, Y177T, and D180L) abrogated binding of at least six of the seven mAbs to ≤15% of SF162 wildtype binding. Binding of six or all of the mAbs was reduced to ≤50% of wildtype by single substitutions at seven positions (168, 180, 181, 183, 184, 191, and 193), while one change, V181I, increased the binding of all mAbs. When mapped onto a model of V2, our results suggest that the epitope of the conformational V2 mAbs is located mostly in the disordered region of the available crystal structure of V1V2, overlapping and surrounding the α4β7 binding site on V2.</p></div

    Summary of binding of conformational V2 mAbs to wildtype and mutant SF162 pseudovirus lysates.

    No full text
    *<p>The values are normalized to CD4-IgG2 (as described in Methods) and expressed as percentages of SF162 wildtype binding (100%). The means of 3–5 experiments are shown.</p

    Location of conformational V2 epitopes and the effects of mutations.

    No full text
    <p>The V1V2 region of SF162 is illustrated as (A) a schematic diagram, and as (B) a 3D model where the effect of amino acid substitutions on binding is indicated and coded by color: Red: residues where binding of at least six conformational V2 mAbs was reduced to ≤15% of binding to wildtype; Orange: binding of at least six conformational V2 mAbs where binding was reduced to ≤50% of wildtype; Dark grey: effect dependent on amino acid substitution. Dashed lines outline the surface area of the LDV integrin binding site.</p
    corecore