18 research outputs found

    Computer simulations on the sympatric speciation modes for the Midas cichlid species complex

    Get PDF
    Cichlid fishes are one of the best model system for the study of evolution of the species. Inspired by them, in this paper we simulated the splitting of a single species into two separate ones via random mutations, with both populations living together in sympatry, sharing the same habitat. We study the ecological, mating and genetic conditions needed to reproduce the polychromatism and polymorphism of three species of the Midas Cichlid species complex. Our results show two scenarios for the A. Citrinellus speciation process, one with and the other without disruptive natural selection. 
In the first scenario, the ecological and genetic conditions are sufficient to create two new species, while in the second the mating and genetic conditions must be synchronized in order to control the velocity of genetic drift

    Phase transition in a mean-field model for sympatric speciation

    Full text link
    We introduce an analytical model for population dynamics with intra-specific competition, mutation and assortative mating as basic ingredients. The set of equations that describes the time evolution of population size in a mean-field approximation may be decoupled. We find a phase transition leading to sympatric speciation as a parameter that quantifies competition strength is varied. This transition, previously found in a computational model, occurs to be of first order.Comment: accepted for Physica

    The architecture of predator-prey and the relationship between complexity and stability

    Get PDF
    Theoretical studies predict that the stability of an ecosystem is negatively correlated with its complexity, measured by the number of interacting species. On the other hand, empirical evidence indicates that food webs are highly interconnected. In this manuscript we present results on the stability two-level predator-prey food webs. We analyzed exhaustively all possible topologies of connections among species. Our findings show that those food webs fall into two classes with clearly distinct stability properties. In one of them stability is negatively correlated with complexity, and in the other group stability is positively correlated. For a positive relationship our results reveals highly structured food webs. The positive or negative relationship is related only to the topological structure of the food web. It is independent of the number of connections, strengths of predator-prey interactions or number of species. We review empirical evidence that corroborates our results

    Sharp gene pool transition in a population affected by phenotype-based selective hunting

    Full text link
    We use a microscopic model of population dynamics, a modified version of the well known Penna model, to study some aspects of microevolution. This research is motivated by recent reports on the effect of selective hunting on the gene pool of bighorn sheep living in the Ram Mountain region, in Canada. Our model finds a sharp transition in the structure of the gene pool as some threshold for the number of animals hunted is reached.Comment: 5 pages, 4 figure

    Simulations of a mortality plateau in the sexual Penna model for biological ageing

    Full text link
    The Penna model is a strategy to simulate the genetic dynamics of age-structured populations, in which the individuals genomes are represented by bit-strings. It provides a simple metaphor for the evolutionary process in terms of the mutation accumulation theory. In its original version, an individual dies due to inherited diseases when its current number of accumulated mutations, n, reaches a threshold value, T. Since the number of accumulated diseases increases with age, the probability to die is zero for very young ages (n = T). Here, instead of using a step function to determine the genetic death age, we test several other functions that may or may not slightly increase the death probability at young ages (n < T), but that decreases this probability at old ones. Our purpose is to study the oldest old effect, that is, a plateau in the mortality curves at advanced ages. Imposing certain conditions, it has been possible to obtain a clear plateau using the Penna model. However, a more realistic one appears when a modified version, that keeps the population size fixed without fluctuations, is used. We also find a relation between the birth rate, the age-structure of the population and the death probability.Comment: submitted to Phys. Rev.

    Monte carlo simulations of parapatric speciation

    Full text link
    Parapatric speciation is studied using an individual--based model with sexual reproduction. We combine the theory of mutation accumulation for biological ageing with an environmental selection pressure that varies according to the individuals geographical positions and phenotypic traits. Fluctuations and genetic diversity of large populations are crucial ingredients to model the features of evolutionary branching and are intrinsic properties of the model. Its implementation on a spatial lattice gives interesting insights into the population dynamics of speciation on a geographical landscape and the disruptive selection that leads to the divergence of phenotypes. Our results suggest that assortative mating is not an obligatory ingredient to obtain speciation in large populations at low gene flow.Comment: submitted to Phys.Rev.
    corecore