6 research outputs found

    Nanopartículas de CuO y su propiedad antimicrobiana en cepas intrahospitalarias

    Get PDF
    Empleando un prototipo de reactor, se sintetizaron nanopartículas (NPs) de CuO a través del método de precipitación a partir de CuSO2·5H2O y de Cu(CH3COO)2·H2O. Las NPs obtenidas fueron caracterizadas mediante XRD, FT-IR, TEM y SEM. La actividad antimicrobiana de las NPs se determinó mediante el método de difusión en placa, colocando 20 mg de NPs de CuO sobre cuatro cepas intrahospitalarias o nosocomiales aisladas de la Unidad de Cuidados Intensivos de un hospital nacional de Lima norte (Staphylococcus epidermidis, Aerococcus viridans, Ochrobactrum anthropi y Micrococcus lylae). La caracterización de las NPs de CuO demostró que las sintetizadas a partir de acetato (CuO–Acet) presentaron una fase pura de CuO, mientras que las sintetizadas a partir de sulfato (CuO–Sulf) presentaron dos fases, donde la de CuO representó más del 84%. Los dominios cristalinos del CuO–Acet y CuO–Sulf fueron 15 y 19 nm, respectivamente. Los halos de inhibición de las cepas estudiadas fueron mayores para las NPs de CuO–Sulf que para las NPs de CuO–Acet; solo para la cepa chrobactrum anthropi se presentaron halos similares para ambos tipos de NPs.Using a prototype reactor, CuO nanoparticles (NPs) were synthetized through the precipitation method, starting from CuSO2·5H2O and Cu(CH3COO)2·H2O. The obtained NPs were characterized by XDR, FT-IR, SEM, and TEM. The antimicrobial activity of the NPs was determined by the plate diffusion method, placing 20 mg of NPs onto four nosocomial strains obtained from north Lima national hospital Intensive-Care Unit (Staphylococcus epidermidis, Aerococcus viridans, Ochrobactrum anthropic, and Micrococcus lylae). NPs characterization revealed that those synthetized from acetate (CuO–Acet) shown pure CuO phase, while those synthetized from sulphate CuO–Sulf shown two phases where CuO was the predominant one, having more than 84%. The crystal domains for CuO–Acet and CuO–Sulf were 15 and 19 nm, respectively. The inhibition halos for the studied strains were larger for CuO–Sulf NPs than CuO–Acet NPs, only Ochrobactrum anthropi displayed similar inhibition halos for both types of NPs

    CuO nanoparticles and their antimicrobial activity against nosocomial strains

    No full text
    Using a prototype reactor, CuO nanoparticles (NPs) were synthetized through the precipitation method, starting from CuSO2·5H2O and Cu(CH3COO)2·H2O. The obtained NPs were characterized by XDR, FT-IR, SEM, and TEM. The antimicrobial activity of the NPs was determined by the plate diffusion method, placing 20 mg of NPs onto four nosocomial strains obtained from north Lima national hospital Intensive-Care Unit (Staphylococcus epidermidis, Aerococcus viridans, Ochrobactrum anthropic, and Micrococcus lylae). NPs characterization revealed that those synthetized from acetate (CuO–Acet) shown pure CuO phase, while those synthetized from sulphate CuO–Sulf shown two phases where CuO was the predominant one, having more than 84%. The crystal domains for CuO–Acet and CuO–Sulf were 15 and 19 nm, respectively. The inhibition halos for the studied strains were larger for CuO–Sulf NPs than CuO–Acet NPs, only Ochrobactrum anthropi displayed similar inhibition halos for both types of NPs

    Subcutaneous anti-COVID-19 hyperimmune immunoglobulin for prevention of disease in asymptomatic individuals with SARS-CoV-2 infection: a double-blind, placebo-controlled, randomised clinical trialResearch in context

    No full text
    Summary: Background: Anti-COVID-19 hyperimmune immunoglobulin (hIG) can provide standardized and controlled antibody content. Data from controlled clinical trials using hIG for the prevention or treatment of COVID-19 outpatients have not been reported. We assessed the safety and efficacy of subcutaneous anti-COVID-19 hyperimmune immunoglobulin 20% (C19-IG20%) compared to placebo in preventing development of symptomatic COVID-19 in asymptomatic individuals with SARS-CoV-2 infection. Methods: We did a multicentre, randomized, double-blind, placebo-controlled trial, in asymptomatic unvaccinated adults (≥18 years of age) with confirmed SARS-CoV-2 infection within 5 days between April 28 and December 27, 2021. Participants were randomly assigned (1:1:1) to receive a blinded subcutaneous infusion of 10 mL with 1 g or 2 g of C19-IG20%, or an equivalent volume of saline as placebo. The primary endpoint was the proportion of participants who remained asymptomatic through day 14 after infusion. Secondary endpoints included the proportion of individuals who required oxygen supplementation, any medically attended visit, hospitalisation, or ICU, and viral load reduction and viral clearance in nasopharyngeal swabs. Safety was assessed as the proportion of patients with adverse events. The trial was terminated early due to a lack of potential benefit in the target population in a planned interim analysis conducted in December 2021. ClinicalTrials.gov registry: NCT04847141. Findings: 461 individuals (mean age 39.6 years [SD 12.8]) were randomized and received the intervention within a mean of 3.1 (SD 1.27) days from a positive SARS-CoV-2 test. In the prespecified modified intention-to-treat analysis that included only participants who received a subcutaneous infusion, the primary outcome occurred in 59.9% (91/152) of participants receiving 1 g C19-IG20%, 64.7% (99/153) receiving 2 g, and 63.5% (99/156) receiving placebo (difference in proportions 1 g C19-IG20% vs. placebo, −3.6%; 95% CI -14.6% to 7.3%, p = 0.53; 2 g C19-IG20% vs placebo, 1.1%; −9.6% to 11.9%, p = 0.85). None of the secondary clinical efficacy endpoints or virological endpoints were significantly different between study groups. Adverse event rate was similar between groups, and no severe or life-threatening adverse events related to investigational product infusion were reported. Interpretation: Our findings suggested that administration of subcutaneous human hyperimmune immunoglobulin C19-IG20% to asymptomatic individuals with SARS-CoV-2 infection was safe but did not prevent development of symptomatic COVID-19. Funding: Grifols
    corecore