137 research outputs found

    The observation of lightning-related events with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory, designed to detect ultra-high energy cosmic rays, can be a valid instrument at the ground to study phenomena related to the atmospheric electricity. The fluorescence detector is a powerful instrument to observe ELVES thanks to its excellent time resolution, while peculiar events with a large number of triggered stations have been recorded by the surface detector. The characteristic signal of these events lasts more than 10 mu s, about two orders of magnitude more than the duration of a signal produced by a cosmic muon. Moreover, each of these events has at least one station with a signal dominated by a high-frequency noise that could be related with a lightning-induced signal. Stations with a long-lasting signal are arranged in a disk shape. There are "big" events characterized by a radius of about 6 km and few "small" events with a radius of about 2-3 km. The signal, generated by a source very close to the ground, first reaches the innermost stations and then spreads outwards. In the "big" events, a lack of signal in some of the central stations was observed. Further studies and checks are in progress to understand the origin of the lack of signal and what mechanisms occurring during the lightning evolution may provide for electric fields capable of generating and accelerating particles that can produce Cherenkov light in the stations of the surface detector

    Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory

    Get PDF
    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to complement the study of ultra-high-energy cosmic rays (UHECR) by measuring the muon content of extensive air showers (EAS). It consists of an array of 61 water Cherenkov detectors on a denser spacing in combination with underground scintillation detectors used for muon density measurement. Each detector is composed of three scintillation modules, with 10 m2^2 detection area per module, buried at 2.3 m depth, resulting in a total detection area of 30 m2^2. Silicon photomultiplier sensors (SiPM) measure the amount of scintillation light generated by charged particles traversing the modules. In this paper, the design of the front-end electronics to process the signals of those SiPMs and test results from the laboratory and from the Pierre Auger Observatory are described. Compared to our previous prototype, the new electronics shows a higher performance, higher efficiency and lower power consumption, and it has a new acquisition system with increased dynamic range that allows measurements closer to the shower core. The new acquisition system is based on the measurement of the total charge signal that the muonic component of the cosmic ray shower generates in the detector.Comment: 40 pages, 33 figure

    Aerosol Optical Depth from MODIS satellite data above the Pierre Auger Observatory

    Get PDF
    Aerosol optical depth can be retrieved from measurements performed by Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument. The MODIS satellite system includes two polar satellites, Terra and Aqua. Each of them flies over the Pierre Auger Observatory once a day, providing two measurements of aerosols per day and covering the whole area of the Observatory. MODIS aerosol data products have been generated by three dedicated algorithms over bright and dark land and over ocean surface. We choose the Deep Blue algorithm data to investigate the distribution of aerosols over the Observatory, as this algorithm is the most appropriate one for semi-arid land of the Pierre Auger Observatory. This data algorithm allows us to obtain aerosol optical depth values for the investigated region, and to build cloud-free aerosol maps with a horizontal resolution 0.1 degrees x0.1 degrees. Since a sufficient number of measurements was obtained only for Loma Amarilla and Coihueco fluorescence detector (FD) sites of the Pierre Auger Observatory, a more detailed analysis of aerosol distributions is provided for these sites. Aerosols over these FD sites are generally distributed in a similar way each year, but some anomalies are also observed. These anomalies in aerosol distributions appear mainly due to some transient events, such as volcanic ash clouds, fires etc. We conclude that the Deep Blue MODIS algorithm provides more realistic aerosol optical depth values than other available algorithms

    Analysis of ELVES at the Pierre Auger Observatory

    Get PDF
    In the last six years, the Fluorescence Detector (FD) of the Auger Observatory has been exploited for the study of transient luminous events occuring high above thunderstorms at large distances (250 to more than 1000 km) from the Observatory. The first ELVES candidate was discovered during a night shift in 2005, and further studies based on auxiliary subtriggers allowed to modify the third level trigger of the observatory in order to acquire them with reasonable efficiency. This report aims to briefly review the studies underway on the >4000 ELVES triggers harvested in the years 2013-18 by the Observatory

    Direct measurement of the muonic content of extensive air showers between 2×1017\mathbf { 2\times 10^{17}} and 2×1018 \mathbf {2\times 10^{18}}~eV at the Pierre Auger Observatory

    Get PDF
    The hybrid design of the Pierre Auger Observatory allows for the measurement of the properties of extensive air showers initiated by ultra-high energy cosmic rays with unprecedented precision. By using an array of prototype underground muon detectors, we have performed the first direct measurement, by the Auger Collaboration, of the muon content of air showers between 2×1017^{17} and 2×1018^{18} eV. We have studied the energy evolution of the attenuation-corrected muon density, and compared it to predictions from air shower simulations. The observed densities are found to be larger than those predicted by models. We quantify this discrepancy by combining the measurements from the muon detector with those from the Auger fluorescence detector at 1017.5^{17.5}eV and 1018^{18}eV. We find that, for the models to explain the data, an increase in the muon density of 38% ±4%(12%) ± (21%)¦(18%) for EPOS-LHC, and of 50%(53%) ±4%(13%) ± (23%)¦(20%) for QGSJetII-04, is respectively needed

    A 3‐Year Sample of Almost 1,600 Elves Recorded Above South - America by the Pierre Auger Cosmic‐Ray Observatory

    Get PDF

    Measurement of the cosmic-ray energy spectrum above 2.5 x 10(18) eV using the Pierre Auger Observatory

    Get PDF
    We report a measurement of the energy spectrum of cosmic rays for energies above 2.5×1018^{18} eV based on 215,030 events recorded with zenith angles below 60°. A key feature of the work is that the estimates of the energies are independent of assumptions about the unknown hadronic physics or of the primary mass composition. The measurement is the most precise made hitherto with the accumulated exposure being so large that the measurements of the flux are dominated by systematic uncertainties except at energies above 5×1019^{19} eV. The principal conclusions are (1) The flattening of the spectrum near 5×1018^{18} eV, the so-called “ankle,” is confirmed. (2) The steepening of the spectrum at around 5×10Z19^{Z19} eV is confirmed. (3) A new feature has been identified in the spectrum: in the region above the ankle the spectral index γ of the particle flux (∝Eγ^{−γ }) changes from 2.51±0.03 (stat)±0.05 (syst) to 3.05±0.05 (stat)±0.10 (syst) before changing sharply to 5.1±0.3 (stat)±0.1 (syst) above 5×1019^{19} eV. (4) No evidence for any dependence of the spectrum on declination has been found other than a mild excess from the Southern Hemisphere that is consistent with the anisotropy observed above 8×1018^{18} eV

    Extraction of the Muon Signals Recorded with the Surface Detector of the Pierre Auger Observatory Using Recurrent Neural Networks

    Get PDF
    The Pierre Auger Observatory, at present the largest cosmic-ray observatory ever built, is instrumented with a ground array of 1600 water-Cherenkov detectors, known as the Surface Detector (SD). The SD samples the secondary particle content (mostly photons, electrons, positrons and muons) of extensive air showers initiated by cosmic rays with energies ranging from 1017 10^{17}~eV up to more than 1020 10^{20}~eV. Measuring the independent contribution of the muon component to the total registered signal is crucial to enhance the capability of the Observatory to estimate the mass of the cosmic rays on an event-by-event basis. However, with the current design of the SD, it is difficult to straightforwardly separate the contributions of muons to the SD time traces from those of photons, electrons and positrons. In this paper, we present a method aimed at extracting the muon component of the time traces registered with each individual detector of the SD using Recurrent Neural Networks. We derive the performances of the method by training the neural network on simulations, in which the muon and the electromagnetic components of the traces are known. We conclude this work showing the performance of this method on experimental data of the Pierre Auger Observatory. We find that our predictions agree with the parameterizations obtained by the AGASA collaboration to describe the lateral distributions of the electromagnetic and muonic components of extensive air showers.Comment: 23 pages, 15 figures. Version accepted for publication in JINS

    Deep-Learning based Reconstruction of the Shower Maximum XmaxX_{\mathrm{max}} using the Water-Cherenkov Detectors of the Pierre Auger Observatory

    Get PDF
    The atmospheric depth of the air shower maximum XmaxX_{\mathrm{max}} is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of XmaxX_{\mathrm{max}} are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of XmaxX_{\mathrm{max}} from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of XmaxX_{\mathrm{max}}. The reconstruction relies on the signals induced by shower particles in the ground based water-Cherenkov detectors of the Pierre Auger Observatory. The network architecture features recurrent long short-term memory layers to process the temporal structure of signals and hexagonal convolutions to exploit the symmetry of the surface detector array. We evaluate the performance of the network using air showers simulated with three different hadronic interaction models. Thereafter, we account for long-term detector effects and calibrate the reconstructed XmaxX_{\mathrm{max}} using fluorescence measurements. Finally, we show that the event-by-event resolution in the reconstruction of the shower maximum improves with increasing shower energy and reaches less than 25 g/cm225~\mathrm{g/cm^{2}} at energies above 2×1019 eV2\times 10^{19}~\mathrm{eV}.Comment: Published version, 29 pages, 12 figure

    Features of the energy spectrum of cosmic rays above 2.5×1018 eV using the pierre auger observatory

    Get PDF
    We report a measurement of the energy spectrum of cosmic rays above 2.5×1018^{18} eV based on 215 030 events. New results are presented: at about 1.3×1019^{19} eV, the spectral index changes from 2.51±0.03(stat)±0.05(syst) to 3.05±0.05(stat)±0.10(syst), evolving to 5.1±0.3(stat)±0.1(syst) beyond 5×1019^{19} eV, while no significant dependence of spectral features on the declination is seen in the accessible range. These features of the spectrum can be reproduced in models with energy-dependent mass composition. The energy density in cosmic rays above 5×1018^{18} eV is [5.66±0.03(stat)±1.40(syst)]×1053^{53} erg Mpc3^{-3}
    corecore