58 research outputs found

    DisAsymNet: Disentanglement of Asymmetrical Abnormality on Bilateral Mammograms using Self-adversarial Learning

    Full text link
    Asymmetry is a crucial characteristic of bilateral mammograms (Bi-MG) when abnormalities are developing. It is widely utilized by radiologists for diagnosis. The question of 'what the symmetrical Bi-MG would look like when the asymmetrical abnormalities have been removed ?' has not yet received strong attention in the development of algorithms on mammograms. Addressing this question could provide valuable insights into mammographic anatomy and aid in diagnostic interpretation. Hence, we propose a novel framework, DisAsymNet, which utilizes asymmetrical abnormality transformer guided self-adversarial learning for disentangling abnormalities and symmetric Bi-MG. At the same time, our proposed method is partially guided by randomly synthesized abnormalities. We conduct experiments on three public and one in-house dataset, and demonstrate that our method outperforms existing methods in abnormality classification, segmentation, and localization tasks. Additionally, reconstructed normal mammograms can provide insights toward better interpretable visual cues for clinical diagnosis. The code will be accessible to the public

    Electric-field Control of Magnetism with Emergent Topological Hall Effect in SrRuO3 through Proton Evolution

    Full text link
    Ionic substitution forms an essential pathway to manipulate the carrier density and crystalline symmetry of materials via ion-lattice-electron coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO3 as a model system, we demonstrate an efficient and reversible control of both carrier density and crystalline symmetry through the ionic liquid gating induced protonation. The insertion of protons electron-dopes SrRuO3, leading to an exotic ferromagnetic to paramagnetic phase transition along with the increase of proton concentration. Intriguingly, we observe an emergent topological Hall effect at the boundary of the phase transition as the consequence of the newly-established Dzyaloshinskii-Moriya interaction owing to the breaking of inversion symmetry in protonated SrRuO3 with the proton compositional film-depth gradient. We envision that electric-field controlled protonation opens a novel strategy to design material functionalities

    Acupuncture and Moxibustion for Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    Get PDF
    Background. Inflammatory bowel diseases (IBD) are recurrent and refractory which include ulcerative colitis (UC) and Crohn’s disease (CD). Clinical researches about acupuncture and moxibustion treatments for IBD are increasing, while systematic reviews about their efficacy remains in a shortage. This study sought to evaluate the efficacy of acupuncture and moxibustion for IBD. Methods. Seven significant databases both in and abroad were searched for randomized controlled trials (RCTs) which compared acupuncture and moxibustion as the main intervention to pharmacotherapy in treating IBD. A meta-analysis was performed. Results. A total of 43 RCTs were included. Among the 43 included trials, 10 trials compared oral sulphasalazine (SASP) with acupuncture and/or moxibustion treatments. A meta-analysis of the 10 trials indicated that acupuncture and moxibustion therapy was superior to oral SASP. Conclusion. Acupuncture and moxibustion therapy demonstrates better efficacy than oral SASP in treating IBD. However, given the limitations of this systematic review and the included literature, definitive conclusions regarding the exact efficacy of acupuncture and moxibustion treatment for IBD cannot be drawn. Extant RCTs still cannot provide sufficient evidence and multicentre, double-blind RCTs with large sample sizes are needed to provide higher-quality evidence

    Construction and Synergistic Effect of Recombinant Yeast Co-expressing Pig IL-2/4/6 on Immunity of Piglets to PRRS Vaccination

    Get PDF
    AbstractIn order to develop cost-effective immunomodulator, the recombinant Pichia pastoris were firstly constructed to co-express porcine IL-2/4/6 genes, and then fermented to feed 45-days Tibetan piglets at different doses to evaluate its effects on immunity of piglets to PRRS vaccination, which simultaneously received intramuscular injection of inactivated PRRS vaccine. The results were found that the leukocytes, IgG and specific antibody to PRRSV, Th and Tc cells increased significantly in the blood of treated piglets in comparison with those of the control (P<0.05); the mRNA expression of TLRs (TLR-2, 3, 4, 7, 9), IFN-γ, IL-2, IL-4, IL-6, IL-7, IL-12 and IL-15 genes were elevated significantly in the immune cells from the blood of treated piglets (P<0.05). Moreover, the growth of the treated piglets also markedly improved whose average net weight gain was significantly higher than the control on 58 days post inoculation (P<0.05). These results suggest that the recombinant yeast can effectively enhance the systematic innate and adaptive immunity of piglets as well as promote the growth of piglet, which could be further developed as cost-effective promising immunomodulator to improve the control of pig PRRS disease

    Mechanisms Underlying the Analgesic Effect of Moxibustion on Visceral Pain in Irritable Bowel Syndrome: A Review

    Get PDF
    Irritable bowel syndrome (IBS) is a functional bowel disorder that causes recurrent abdominal (visceral) pain. Epidemiological data show that the incidence rate of IBS is as high as 25%. Most of the medications may lead to tolerance, addiction and toxic side effects. Moxibustion is an important component of traditional Chinese medicine and has been used to treat IBS-like abdominal pain for several thousand years in China. As a mild treatment, moxibustion has been widely applied in clinical treatment of visceral pain in IBS. In recent years, it has played an irreplaceable role in alternative medicine. Extensive clinical studies have demonstrated that moxibustion for treatment of visceral pain is simple, convenient, and inexpensive, and it is being accepted by an increasing number of patients. There have not been many studies investigating the analgesic mechanisms of moxibustion. Studies exploring the analgesic mechanisms have mainly focused on visceral hypersensitivity, brain-gut axis neuroendocrine system, and immune system. This paper reviews the latest developments in moxibustion use for treatment of visceral pain in IBS from these perspectives. It also evaluates potential problems in relevant studies on the mechanisms of moxibustion therapy to promote the application of moxibustion in the treatment of IBS

    Reversible manipulation of the magnetic state in SrRuO3 through electric-field controlled proton evolution

    Get PDF
    Ionic substitution forms an essential pathway to manipulate the structural phase, carrier density and crystalline symmetry of materials via ion-electron-lattice coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO3 as a model system, we demonstrate an efficient and reversible control of both structural and electronic phase transformations through the electric-field controlled proton evolution with ionic liquid gating. The insertion of protons results in a large structural expansion and increased carrier density, leading to an exotic ferromagnetic to paramagnetic phase transition. Importantly, we reveal a novel protonated compound of HSrRuO3 with paramagnetic metallic as ground state. We observe a topological Hall effect at the boundary of the phase transition due to the proton concentration gradient across the film-depth. We envision that electric-field controlled protonation opens up a pathway to explore novel electronic states and material functionalities in protonated material systems

    An inter-particle contact area and time restoration for softening treatment in thermal discrete element modeling

    No full text
    The thermal discrete element method (TDEM), a coupling of the discrete element model (DEM) with the inter-particle heat transfer models, has been applied to the simulation of the particulate systems with heat transfer. Additionally, small normal spring stiffness coefficient has often been adopted instead of the real value in the softening treatment to improve the calculation efficiency. However, present research has indicated that the heat transfer thus simulated is exaggerated even though such softening treatment has almost no effect on the movement of particles. In this letter, we propose a restoration method to restore the inter-particle contact time and contact area in the real heat transfer process even when particle stiffness is softened by several orders. This restoration method keeps the merit of the softening treatment in the DEM simulation of the particulate systems with heat transfer and avoids the unreasonable heat transfer calculations using the softening treatment method

    Importance analysis for models with correlated input variables by the state dependent parameters method

    Get PDF
    AbstractFor clearly exploring the origin of the variance of the output response in case the correlated input variables are involved, a novel method on the state dependent parameters (SDP) approach is proposed to decompose the contribution by correlated input variables to the variance of output response into two parts: the uncorrelated contribution due to the unique variations of a variable and the correlated one due to the variations of a variable correlated with other variables. The correlated contribution is composed by the components of the individual input variable correlated with each of the other input variables. An effective and simple SDP method in concept is further proposed to decompose the correlated contribution into the components, on which a second order importance matrix can be solved for explicitly exposing the contribution components of the correlated input variable to the variance of the output response. Compared with the existing regression-based method for decomposing the contribution by correlated input variables to the variance of the output response, the proposed method is not only applicable for linear response functions, but is also suitable for nonlinear response functions. It has advantages both in efficiency and accuracy, which are demonstrated by several numerical and engineering examples

    Uniform Convergence Analysis of the Discontinuous Galerkin Method on Layer-Adapted Meshes for Singularly Perturbed Problem

    No full text
    This paper concerns a discontinuous Galerkin (DG) method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations. We derive an optimal convergence of the DG method for eight layer-adapted meshes in a general framework. The convergence rate is valid independent of the small parameter. Furthermore, we establish a sharper L2-error estimate if the true solution has a special regular component. Numerical experiments are also given
    • …
    corecore