9 research outputs found

    Bosonizing one-dimensional cold atomic gases

    Full text link
    We present results for the long-distance asymptotics of correlation functions of mesoscopic one-dimensional systems with periodic and open (Dirichlet) boundary conditions, as well as at finite temperature in the thermodynamic limit. The results are obtained using Haldane's harmonic-fluid approach (also known as ``bosonization''), and are valid for both bosons and fermions, in weakly and strongly interacting regimes. The harmonic-fluid approach and the method to compute the correlation functions using conformal transformations are explained in great detail. As an application relevant to one-dimensional systems of cold atomic gases, we consider the model of bosons interacting with a zero-range potential. The Luttinger-liquid parameters are obtained from the exact solution by solving the Bethe-ansatz equations in finite-size systems. The range of applicability of the approach is discussed, and the prefactor of the one-body density matrix of bosons is fixed by finding an appropriate parametrization of the weak-coupling result. The formula thus obtained is shown to be accurate, when compared with recent diffusion Montecarlo calculations, within less than 10%. The experimental implications of these results for Bragg scattering experiments at low and high momenta are also discussed.Comment: 39 pages + 14 EPS figures; typos corrected, references update

    Momentum distribution and correlation function of quasicondensates in elongated traps

    Full text link
    We calculate the spatial correlation function and momentum distribution of a phase-fluctuating, elongated three-dimensional condensate, in a trap and in free expansion. We take the inhomogeneous density profile into account {\it{via}} a local density approximation. We find an almost Lorentzian momentum distribution, in stark contrast with a Heisenberg-limited Thomas-Fermi condensate.Comment: 5 pages, 2 figures; final version, references update

    Safety insights from forensics evaluations at Daiichi

    No full text
    Although it is clear that the accident signatures from each affected unit at the Fukushima Daiichi Nuclear Power Station [Daiichi] differ, much is not known about the end-state of core materials within these units. Some of this uncertainty can be attributed to a lack of information related to cooling system operation and cooling water injection. There is also uncertainty in our understanding of phenomena affecting: a) in-vessel core damage progression during severe accidents in boiling water reactors (BWRs), and b) accident progression after vessel failure (ex-vessel progression) for BWRs and Pressurized Water Reactors (PWRs). These uncertainties arise due to limited full scale prototypic data. Similar to what occurred after the accident at Three Mile Island Unit 2, these Daiichi units offer the international community a means to reduce such uncertainties by obtaining prototypic data from multiple full-scale BWR severe accidents. Information obtained from Daiichi is required to inform Decontamination and Decommissioning activities, improving the ability of the Tokyo Electric Power Company (TEPCO) to characterize potential hazards and to ensure the safety of workers involved with cleanup activities. This paper reports initial results from the US Forensics Effort to utilize examination information obtained by TEPCO to enhance the safety of existing and future nuclear power plant designs. In this paper, three examples are presented in which examination information, such as visual images, dose surveys, sample evaluations, and muon tomography examinations, along with data from plant instrumentation, are used to obtain significant safety insights in the areas of component performance, fission product release and transport, debris end-state location, and combustible gas generation and transport. In addition to reducing uncertainties related to severe accident modeling progression, these insights confirm actions, such as the importance of water addition and containment venting, that are emphasized in updated guidance for severe accident prevention, mitigation, and emergency planning

    Benchmark study of the accident at the Fukushima Daiichi NPS Best-estimate case comparison

    No full text
    International audienceThe Great East Japan earthquake occurred on March 11, 2011, at 1446, and the subsequent tsunami led Tokyo Electric Power Company's (TEPCO's) Fukushima Daiichi Nuclear Power Station (NPS) beyond a design-basis accident. After the accident, the Japanese government and TEPCO compiled a roadmap toward an early resolution to the accident including, among the main activities, the employment and improvement of existing severe accident (SA) computer codes. In the member countries of the Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA), SA codes were developed after the accident at Three Mile Island Unit 2 and widely employed to assess NPS status in the postulated SA conditions. Therefore, working plans have been set up with the country members of the OECD/NEA to apply existing SA codes to analyze the accidents at the Fukushima Daiichi NPS Units 1, 2, and 3 and support the decommissioning, constituting an international program named Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF). The objectives of the BSAF project are to analyze the accident progression of Fukushima Daiichi NPS, to raise the understanding of SA phenomena, to contribute to the improvement of the methods and models of the SA codes, and to define the status of the distribution of debris in the reactor pressure vessels and primary containment vessels for decommissioning. The present technical paper summarizes the achievements obtained through a comparison of the results, emphasizing the portions of the accident where all the participants reached a common consensus and identifying still open questions where future work should be directed. Consensus exists on the current condition of Unit 1, where a large fraction of the fuel is assumed to have relocated ex-vessel. On the other hand, larger uncertainties exist for Units 2 and 3, where in-vessel and ex-vessel scenarios produce a reasonable prediction of the accident progression
    corecore