587 research outputs found
Drops on soft solids: Free energy and double transition of contact angles
The equilibrium shape of liquid drops on elastic substrates is determined by
minimising elastic and capillary free energies, focusing on thick
incompressible substrates. The problem is governed by three length scales: the
size of the drop , the molecular size , and the ratio of surface tension
to elastic modulus . We show that the contact angles undergo two
transitions upon changing the substrates from rigid to soft. The microscopic
wetting angles deviate from Young's law when , while the
apparent macroscopic angle only changes in the very soft limit . The elastic deformations are worked out in the simplifying case where the
solid surface energy is assumed constant. The total free energy turns out lower
on softer substrates, consistent with recent experiments
Characteristics of a population of commuter cyclists in the Netherlands: perceived barriers and facilitators in the personal, social and physical environment
Background: Daily cycling to work has been shown to improve physical performance and health in men and women. It is very common in the Netherlands: the most recent data show that one quarter of commuting journeys are by bicycle. However, despite the effort going into campaigns to promote commuter cycling, about 30% of commuter journeys up to 5 kilometers are still by car. The question is how to stimulate commuter cycling more effectively. This article aims to contribute to a better understanding of the perceived barriers and facilitators of cyclists/non-cyclists and personal factors associated with commuter cycling.Methods: A random sample of 799 Dutch employees (response rate 39.6%) completed an internet survey, which comprised two parts. One part of the questionnaire focused on the determinants of cycling behavior including equal numbers of personal, social factors and environmental factors. The other component focused on assessing data on physical activity (PA) behavior. Descriptive and logistic regression analyses were used to analyze factors associated with commuter cycling.Results: Meeting the physical activity guideline was positively associated with commuter cycling. Television viewing and working full-time were negatively associated. Twenty-six percent of the participants met the PA guideline simply by cycling to work, with health as the main reason. The main barriers for non-cyclists (60%) were perspiration when arriving at work, weather and travelling time. Shorter travelling times compared with other transportation modes were an important facilitator. Environmental factors were positively related to more frequent and more convenient commuter cycling, but they were hardly mentioned by non-cyclists.Conclusions: This study shows that a relatively large group fulfils the PA recommendations merely by cycling to work. Personal factors (i.e., perceived time and distance) are major barriers to commuter cycling and should be targeted in cycling campaigns, especially in subgroups living within cycling distance to work. Targeting environmental determinants in such campaigns seems to be less important in the Netherlands. © 2010 Engbers and Hendriksen; licensee BioMed Central Ltd
New Polymer Tensiometers: Measuring Matric Pressures Down to the Wilting Point
Tensiometers are commonly used for measuring soil water matric pressures. Unfortunately, the water-filled reservoir of conventional tensiometers limits their applicability to soil water matric pressures above approximately –0.085 MPa. Tensiometers filled with a polymer solution instead of water are able to measure a larger range of soil water matric pressures. We designed and constructed six prototype polymer tensiometers (previously called osmotic tensiometers) consisting of a wide-range pressure transducer with a temperature sensor, a stainless steel casing, and a ceramic plate with a membrane preventing polymer leakage. A polymer chamber (0.1–2.2 cm3) was located between the pressure transducer and the plate. We tested the polymer tensiometers for long-term operation, the effects of temperature, response times, and performance in a repacked sandy loam under laboratory conditions. Several months of continuous operation caused a gradual drop in the osmotic pressure, for which we developed a suitable correction. The osmotic potential of polymer solutions is temperature dependent, and requires calibration before installation. The response times to sudden and gradual changes in ambient temperature were found to be affected by polymer chamber height and polymer type. Practically useful response times (<0.2 d) are feasible, particularly for chambers shorter than 0.20 cm. We demonstrated the ability of the instrument to measure the range of soil water pressures in which plant roots are able to take up water (from 0 to –1.6 MPa), to regain pressure without user interference and to function properly for time periods of up to 1 yr
Aerodynamics Flapping-Flight Robotic Bird using Unsteady Lifting-Line Method
The Robird is a bird-like drone, or ornithopter, that generates lift and thrust by flapping and pitching its wings, which performance resembles that of a Peregrine falcon. This paper describes an extension, from steady flow to unsteady flow, of Prandtl’s Lifting-Line method to predict the unsteady lift, thrust, pitching-moment, root-bending moment, required-power and propulsive-efficiency of the robotic bird. The extension comprises the derivation of the Kutta-Joukowski Theorem for unsteady flow, an unsteady trailing-edge Kutta condition and the representation of the wake as a stationary transpiration-type of planar surface carrying a time-dependent dipole distribution. Its instantaneous strength is obtained from the spanwise distribution of the circulation of the lifting line at earlier times. For the cases considered, the numerical method predicts that the section-lift, section-thrust, section-pitching-moment and section-required-power of the wing vary in time. During flapping flight, the cycle-averaged section-lift and section-thrust, as well as the cycle-averaged overall lift and thrust, are mostly positive. The spanwise distributions of cycle-averaged sectional aerodynamic quantities like circulation, lift, etc., as well as the corresponding span-integrated overall quantities and the propulsive efficiency, depend on flight parameters Strouhal number, but not all on pitch amplitude, cycle-averaged effective angle-of-attack nor phase difference between pitching and flapping. The topology of the wake in terms of the unsteady wake dipole distribution, as well as its corresponding vortex distribution, predicted by the unsteady-lifting-line method depend on all flight parameters. The paper provides the relation between wake topology and the generation of lift and thrust
Passivity-Preserving, Balancing-Based Model Reduction for Interconnected Systems
This paper proposes a balancing-based model reduction approach for an
interconnection of passive dynamic subsystems. This approach preserves the
passivity and stability of both the subsystems and the interconnected system.
Hereto, one Linear Matrix Inequality (LMI) per subsystem and a single Lyapunov
equation for the entire interconnected system needs to be solved, the latter of
which warrants the relevance of the reduction of the subsystems for the
accurate reduction of the interconnected system, while preserving the
modularity of the reduction approach. In a numerical example from structural
dynamics, the presented approach displays superior accuracy with respect to an
approach in which the individual subsystems are reduced independently.Comment: 6 pages, 4 figures, to appear in Proceedings of IFAC World Congress
202
Circular spectropolarimetric sensing of chiral photosystems in decaying leaves
Circular polarization spectroscopy has proven to be an indispensable tool in
photosynthesis research and (bio)-molecular research in general. Oxygenic
photosystems typically display an asymmetric Cotton effect around the
chlorophyll absorbance maximum with a signal . In vegetation, these
signals are the direct result of the chirality of the supramolecular
aggregates. The circular polarization is thus directly influenced by the
composition and architecture of the photosynthetic macrodomains, and is thereby
linked to photosynthetic functioning. Although ordinarily measured only on a
molecular level, we have developed a new spectropolarimetric instrument,
TreePol, that allows for both laboratory and in-the-field measurements. Through
spectral multiplexing, TreePol is capable of fast measurements with a
sensitivity of and is therefore suitable of non-destructively
probing the molecular architecture of whole plant leaves. We have measured the
chiroptical evolution of \textit{Hedera helix} leaves for a period of 22 days.
Spectrally resolved circular polarization measurements (450-900 nm) on whole
leaves in transmission exhibit a strong decrease in the polarization signal
over time after plucking, which we accredit to the deterioration of chiral
macro-aggregates. Chlorophyll \textit{a} levels measured over the same period
by means of UV-Vis absorption and fluorescence spectroscopy showed a much
smaller decrease. With these results we are able to distinguish healthy from
deteriorating leaves. Hereby we indicate the potency of circular polarization
spectroscopy on whole and intact leaves as a nondestructive tool for structural
and plant stress assessment. Additionally, we underline the establishment of
circular polarization signals as remotely accessible means of detecting the
presence of extraterrestrial life.Comment: 29 pages, 6 figure
Nanosecond repetitively pulsed discharges in N2-O2 mixtures: Inception cloud and streamer emergence
We evaluate the nanosecond temporal evolution of tens of thousands of positive discharges in
a 16 cm point-plane gap in high purity nitrogen 6.0 and in N2–O2 gas mixtures with oxygen
contents of 100 ppm, 0.2%, 2% and 20%, for pressures between 66.7 and 200 mbar. The
voltage pulses have amplitudes of 20 to 40 kV with rise times of 20 or 60 ns and repetition
frequencies of 0.1 to 10 Hz. The discharges first rapidly form a growing cloud around the tip,
then they expand much more slowly like a shell and finally after a stagnation stage they can
break up into rapid streamers. The radius of cloud and shell in artificial air is about 10% below
the theoretically predicted value and scales with pressure p as theoretically expected, while
the observed scaling of time scales with p raises questions. We find characteristic dependences
on the oxygen content. No cloud and shell stage can be seen in nitrogen 6.0, and streamers
emerge immediately. The radius of cloud and shell increases with oxygen concentration.
On the other hand, the stagnation time after the shell phase is maximal for the intermediate
oxygen concentration of 0.1% and the number of streamers formed is minimal; here the cloud
and shell phase seem to be particularly stable against destabilization into streamers
The role of dendritic cells in the pathogenesis of systemic lupus erythematosus
The etiology of the autoimmune disease systemic lupus erythematosus is not known, but aberrant apoptosis and/or insufficient clearance of apoptotic material have been assigned a pivotal role. During apoptosis, nucleosomes and several endogenous danger-associated molecular patterns are incorporated in blebs. Recent data indicate that apoptotic blebs induce maturation of myeloid dendritic cells, resulting in IL-17 production by T cells. In this review we summarize current knowledge on the role of dendritic cells in the pathogenesis of systemic lupus erythematosus with special emphasis on the uptake of apoptotic blebs by dendritic cells, and the subsequent induction of Th17 cells
Dynamic Cardiac Magnetic Resonance Fingerprinting During Vasoactive Breathing Maneuvers: First Results.
BACKGROUND
Cardiac magnetic resonance fingerprinting (cMRF) enables simultaneous mapping of myocardial T1 and T2 with very short acquisition times. Breathing maneuvers have been utilized as a vasoactive stress test to dynamically characterize myocardial tissue in vivo. We tested the feasibility of sequential, rapid cMRF acquisitions during breathing maneuvers to quantify myocardial T1 and T2 changes.
METHODS
We measured T1 and T2 values using conventional T1 and T2-mapping techniques (modified look locker inversion [MOLLI] and T2-prepared balanced-steady state free precession), and a 15 heartbeat (15-hb) and rapid 5-hb cMRF sequence in a phantom and in 9 healthy volunteers. The cMRF5-hb sequence was also used to dynamically assess T1 and T2 changes over the course of a vasoactive combined breathing maneuver.
RESULTS
In healthy volunteers, the mean myocardial T1 of the different mapping methodologies were: MOLLI 1,224 ± 81 ms, cMRF15-hb 1,359 ± 97 ms, and cMRF5-hb 1,357 ± 76 ms. The mean myocardial T2 measured with the conventional mapping technique was 41.7 ± 6.7 ms, while for cMRF15-hb 29.6 ± 5.8 ms and cMRF5-hb 30.5 ± 5.8 ms. T2 was reduced with vasoconstriction (post-hyperventilation compared to a baseline resting state) (30.15 ± 1.53 ms vs. 27.99 ± 2.07 ms, p = 0.02), while T1 did not change with hyperventilation. During the vasodilatory breath-hold, no significant change of myocardial T1 and T2 was observed.
CONCLUSIONS
cMRF5-hb enables simultaneous mapping of myocardial T1 and T2, and may be used to track dynamic changes of myocardial T1 and T2 during vasoactive combined breathing maneuvers
Novel bradycardia pacing strategies
Contains fulltext :
229186.pdf (Publisher’s version ) (Closed access)The adverse effects of ventricular dyssynchrony induced by right ventricular (RV) pacing has led to alternative pacing strategies, such as biventricular, His bundle (HBP), LV septal (LVSP) and left bundle branch pacing (LBBP). Given the overlap, LVSP and LBBP are also collectively referred to as left bundle branch area pacing (LBBAP). Although among these alternative pacing sites HBP is theoretically the ideal strategy as it maintains a physiological ventricular activation, its application requires more skills and is associated with the most complications. LBBAP, where the ventricular pacing lead is advanced through the interventricular septum to its left side, creates ventricular activation that is only slightly more dyssynchronous. Preliminary studies have shown that LBBAP is feasible, safe and encounters less limitations than HBP. Further studies are needed to differentiate between LVSP and LBBP with regard to acute functional and long-term clinical outcome
- …