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The Robird is a bird-like drone or ornithopter, that generates lift and thrust by 

flapping/pitching its wing, which performance resembles that of a Peregrine falcon. This 

paper describes an extension from steady flow to unsteady flow of Prandtl’s Lifting-line 

method to predict the unsteady lift, thrust, pitching moment, required power and propulsive 

efficiency of the robotic bird. The extension comprises the derivation of the Kutta-Joukowski 

Theorem for unsteady flow, an unsteady Kutta condition and the representation of the wake 

as a stationary transpiration-type of surface carrying a time-dependent dipole distribution, 

which instantaneous strength is obtained from the spanwise distribution of the circulation of 

the lifting line at earlier times. For the cases considered, the numerical method predicts that 

both the section-lift, section-thrust and section-pitching-moment of the wing vary with time. 

The cycle-averaged section-lift and section-thrust, as well as the cycle-averaged overall lift and 

thrust, are mostly positive during the flapping flight. The spanwise distributions of cycle-

averaged sectional circulation, lift, pitching-moment and upwash, as well as cycle-averaged 

overall lift and pitching-moment depend on Strouhal number, not on pitch amplitude, whereas 

the spanwise distribution of cycle-averaged sectional thrust and required power, as well as 

cycle-averaged overall thrust, required power and propulsive efficiency depend on Strouhal 

number and on pitch amplitude. The topology of the wake in terms of the unsteady wake 

dipole and its corresponding vortex distribution as predicted by the unsteady-lifting-line 

method, depends on Strouhal number and amplitude of the pitching motion. The paper 

describes the relation between wake topology and the generation of lift and thrust. 

I. Introduction 

The Robird [1] is an ornithopter-type of drone developed by Clear Flight Solutions (CFS) that, during its flight, 

was designed to appear like a Peregrine falcon, see Fig. 1. The drone has the same dimensions and weight as the real 

falcon, and produces lift and thrust by flapping/pitching its wings. Birds instinctively sense that a falcon in flapping 

flight is on the hunt, making the Robird very suitable for bird control at airports, garbage dumps, crop fields, etc. The 

foam wings of the Robird differ from the wings of ornithopters of similar size, such as the Robo Raven [2], since it 

features than airfoil-type wings rather than foil-type wings.  

Furthermore, the Robird wings do not pitch passively nor consist of hinged, individually moving, parts like the 

Festo Smartbird [3]. The size of drones like the Robird, the Robo Raven and the Smartbird, is in a different class than 

successful flapping Micro-Aerial Vehicles (MAV’s), such as the Delfly [4] and the insect-sized robotic fly [5]. 

The performance of flapping wings is dominated by unsteady flow phenomena, which makes the aerodynamics 

inherently complex. Experimental work on birds and bird-like flapping wings has shown the importance of 

mechanisms such as leading-edge vortices for slow flight and hovering flight [6–8]. The challenge of formulating an 

aerodynamic model for flapping wings is to account for the dynamics of the wake, which is required to accurately 

predict the aerodynamic performance [9]. Many models for the wake have been proposed in the past [10, 11, 12]. 
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Fig. 1  Robird [1], robotic bird based on Peregrine falcon (left). Typical airfoil sections wing Robird. (right). 

 

The results of these models share one important characteristic: the generation of thrust is associated with a wake 

that induces a jet-like chordwise flow. This jet-like flow has been confirmed to be present in the wake of the Robird 

with both numerical methods [13] and experimental methods [14, 15]. The choice of the model of the wake may 

depend on the bird species, and may even vary with flight speed for specific birds [16]. The accuracy of the wake 

models is grossly determined by vortex dynamics, which carries over to the accuracy of the prediction of lift and drag. 

[17].  

Though the Robird proves that flapping flight by a robotic bird is possible, the theory behind the aerodynamics of 

flapping flight is not yet fully understood. The goal of the present study, carried out since 2012, is to contribute to a 

better understanding of the aerodynamics of flapping wing propulsion of a robotic bird like the Peregrine-falcon based 

Robird. In [18] the lift curve has been measured of a scale model of the wing of the Robird in order to obtain the lift 

and drag polar for steady, non-flapping flow conditions. This established the basic aerodynamics of the wing, with its 

highly cambered thin airfoil sections (similar to the ones of flying machines in the early part of last century), see Fig. 

1, for the robotic bird operating at Reynolds numbers in the range of 30×104 to 105. CFD analysis [13] performed for 

2D flow about the heaving/pitching Robird airfoils shown in Fig. 1, gave first insight in the unsteady aerodynamics 

of such cambered airfoils, as well as the relation between the flow in the wake and the generation of thrust. Further 

wind-tunnel studies [14, 15, 19] focused on the wake downstream of a (full-scale) half-model of the Robird during 

flapping motion, using: (i) a wake rake, as well as a 7-hole probe; (ii) flow visualization, and; (iii) PIV (Particle Image 

Velocimetry) measurements, respectively. In [19] a simple unsteady potential flow model for 2D heaving/pitching 

motion has been presented developed for investigating whether representing the wake of a flapping wing by a vortex 

sheet yields the jet-like type of distribution of the axial velocity, generated by a reversed von Kármán vortex street. 

Such a velocity distribution in the wake is indicative for the generation of thrust by a flapping wing. 

For the subsequent experimental part of the study an advanced PIV set-up has been designed and realized for the 

upgraded Aero-acoustic Wind Tunnel [20] at the University of Twente (open-jet test section w × h = 0.9m × 0.7m). 

In [21, 22] the PIV campaign to obtain wake velocity data for the wake of the Robird port-side wing has been pursued 

further. In addition, an unsteady lifting-line method has been developed for the 3D flow about flapping wings. 

 The goal of the present paper is to report on further applications of the unsteady lifting-line method to the 

Robird flapping motion, in a wider range of parameters and include pitching moment, required-power and propulsive 

efficiency alongside lift and thrust. Furthermore, within the range of parameters considered, the wake topology is 

analysed and characterised in more detail. 

 The present paper is structured as follows: Section 2 introduces the Robird, the kinematics of the flapping wing 

of the Robird and the simplifications that will be made for the computational part of this study. Section 3 describes 

the computational method followed by section 4 with a description on how the developed lifting-line method for 

unsteady flow is applied to the Robird. This section is followed by section 5, which describes the results of the 

numerical method, followed by the conclusions of the present investigation in section 6. 

 

II. Kinematics Flapping Motion Wing Robotic Bird 

The motion of a bird has many degrees of freedom. In the present study the description of the motion is restricted 

to the motion of a rigid wing with just two degrees of freedom: flapping 𝛾(𝑡) and pitching 𝜃(𝑡). In a 2D frame work, 
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the motion of a chordwise section of the wing is equivalent to a combination of a heaving ℎ̇(𝑡) and a pitching 𝜃(𝑡) 

motion, see Fig. 2. 

 
Fig. 2 Flapping/pitching motion of wings [13]. Left: definition flapping motion. Center Free stream velocity 

and overall dimensions. Right: definition of equivalent 2D heaving/pitching motion airfoil section. 

 

 The flapping motion 𝛾(𝑡) of the quarter-chord line, is approximated as a harmonic motion of constant period 

𝑇, defined by 

  𝛾(𝑡) = 𝛾1 + 𝛾0sin2𝜋
𝑡

𝑇
,                       (1) 

with 𝛾(𝑡) the wing shoulder angle of the pitch axis as function of time, 𝛾0 is the amplitude of the flapping motion 

and 𝛾1is the zero-position (off-set) of the wing. The period T of the motion equals 𝑇 = 1/𝑓, with 𝑓 the frequency of 

the flapping motion. The pitching motion, coupled to the plunging motion, is a harmonic motion, at the same 

frequency, defined as 

  𝜃(𝑡) = 𝜃1 + 𝜃0sin(2𝜋
𝑡

𝑇
+ 𝜙),                      (2) 

with 𝜃(𝑡) the pitching angle around the pitch axis, here the spanwise quarter-chord line, as function of time, 𝜃0 

the amplitude of the pitch, 𝜃1 the off-set of the pitch angle (equal to the cycle-averaged pitch angle) and 𝜙 the phase 

shift between flapping motion and pitching motion. It is assumed that all motion parameters, i.e., 𝛾0, 𝛾1, 𝜃0, 𝜃1 and 𝜙 

are constant along the pitch axis.  

Note that here the pitch angle θ does not depend on the spanwise coordinate 𝜂, i.e., nor geometric twist, nor 

aerodynamic twist, due to the flexibility of the wing, is considered in the definition of the pitching angle. 

 The height ℎ(𝑡), above the horizontal plane, of the on-quarter-chord point of the airfoil section at distance 𝑦 

from the pivotal point of the plunging motion, is a function of 𝛾0 and 𝛾1: 

  ℎ(𝑦, 𝑡) = |𝑦|sin𝛾(𝑡), for 𝑦 ∈ [−𝑏/2, 𝑏/2],                (3) 

with 𝑏/2 the semi-span of the wing. 

In the lifting-line method to be discussed, the boundary conditions are applied on a stationary reference surface, 

here the plane 𝑧 = 0. The effect of the motion of the wing is accounted for through the so-called effective angle of 

attack 𝛼𝑒𝑓𝑓(𝑦, 𝑡) of the airfoil sections along the span of the wing, see Fig. 3: 

  𝛼𝑒𝑓𝑓(𝑦, 𝑡) = 𝜃(𝑡) + arctan(
−1

𝑈∞

𝜕ℎ(𝑦,𝑡)

𝜕𝑡
).                 (4) 

    
Fig. 3 Effective angle of attack 𝜶𝒆𝒇𝒇(𝒚, 𝒕) due to plunging/pitching motion. Green arrow indicates direction 

of plunging motion. Angle of attack due to plunging motion equals 𝜶𝒑𝒍𝒖𝒏𝒈𝒆 = 𝐚𝐫𝐜𝐭𝐚𝐧(
−𝟏

𝑼∞

𝝏𝒉(𝒚,𝒕)

𝝏𝒕
 

The contribution of the plunge (heave) of the airfoil sections due to the flapping motion of the wing follows from 

the time variation of the position of the flapping/pitching wing with respect to the off-set angle 𝛾1. With 𝑦 the distance 

from the axis of rotation, 

  ℎ(𝑦, 𝑡) = |𝑦|sin(𝛾1 + 𝛾0sin
2𝜋𝑡

𝑇
) ≡ ℎ1(𝑦) + ℎ0(𝑦) sin (

2𝜋𝑡

𝑇
) ≈ |𝑦|𝛾1 + |𝑦|𝛾0sin

2𝜋𝑡

𝑇
,      (5) 
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so that ℎ1(𝑦) = |𝑦|𝛾1 and ℎ0(𝑦) = |𝑦|𝛾0. It then follows: 

  
𝜕ℎ(𝑦,𝑡)

𝜕𝑡
= |𝑦|𝛾02π𝑓cos

2𝜋𝑡

𝑇
.                      (6) 

 

Substitution in the expression for the effective angle of attack 𝛼𝑒𝑓𝑓(𝑦, 𝑡), given in Eq. (4), yields 

  𝛼𝑒𝑓𝑓(𝑦, 𝑡) = [𝜃1 + 𝜃0 sin (
2𝜋𝑡

𝑇
+ 𝜙)] − arctan(𝜋

𝑓2|𝑦|𝛾0

𝑈∞
cos

2𝜋𝑡

𝑇
) for 𝑦 ∈ [−𝑏/2, 𝑏/2].     (7) 

Note that the angle of attack of the configuration is included in the definition of the effective angle of attack 𝛼𝑒𝑓𝑓 , 

specifically in 𝜃1. 

 In terms of dimensionless quantities, the effective angle of attack of a wing section is expressed as: 

  𝛼𝑒𝑓𝑓(
𝑦

𝑏/2
,
𝑡

𝑇
) = [𝜃1 + 𝜃0 sin (2𝜋

𝑡

𝑇
+ 𝜙)] − arctan(𝜋St

|𝑦|

𝑏/2
cos2𝜋

𝑡

𝑇
),         (8a) 

with the Strouhal number defined as 

  St ≡
𝑓2ℎ0(𝑦=𝑏/2)

𝑈∞
,                        

 (8b) 

in terms of the arc length, 2ℎ0(𝑦 = 𝑏/2) = 𝑏𝛾0, covered by the wing tip during a full period of the motion. Eq. 

(8) shows that the effective angle of attack depends on spanwise location 𝑦/0.5𝑏 and tine 𝑡/𝑇, as well as on four 

independent parameters, i.e., 

  𝛼𝑒𝑓𝑓 = 𝛼𝑒𝑓𝑓(
𝑦

𝑏/2
,
𝑡

𝑇
; 𝜃1, 𝜃0, 𝜙, St).                   (9) 

 For a representative set of parameters, the left plot of Fig. 4 presents the effective angle of attack as function 

of time, during one cycle, at the tip of the wing |𝑦|/0.5𝑏 = 1. The right plot of Fig. 4 illustrates the spanwise 

distribution of the effective angle of attack along the span of the wing, for a number of instants during a cycle. 

 
Fig. 4 Effective angle of attack 𝛼𝑒𝑓𝑓(|𝑦|/0.5𝑏, 𝑡/𝑇), in degrees, due to plunging/pitching motion. Left: in radians, 

as function of 𝑡/𝑇 at wing tips |𝑦|/0.5𝑏 = 1. Right: as function of 𝑦/0.5𝑏 at six instants during half a cycle, from 

upstroke 𝑡/𝑇 ∈ [0.0.25] to downstroke 𝑡/𝑇 ∈ [0.25,0.5]. 𝜃1 = 0, 𝜃0 = 10deg, 𝜙 = 90deg, St = 0.3343. 
 

 The left plot in Fig. 4 shows that the pitching motion, 90 deg out of phase with the plunging motion, reduces 

the amplitude of the angle of attack due to the plunge. It shows that, at the wing tips, the effect of the plunge dominates 

𝛼𝑒𝑓𝑓 , however, the reduction of 𝛼𝑒𝑓𝑓  by the pitch mitigates the danger of flow separation. Note that, for this set of 

kinematic parameters, along the whole span, the plunge angle as well as the pitch angle and therefore the effective 

angle of attack, equal zero at 𝑡/𝑇 = 0.25 and 0.75 in the cycle, see also the right plot in Fig. 4.  

The derivative of 𝛼𝑒𝑓𝑓(
𝑦

𝑏/2
,
𝑡

𝑇
) with respect to 𝑡/𝑇 follows from Eq. (8) as: 

  
𝜕

𝜕𝑡
𝛼𝑒𝑓𝑓 (

𝑦

𝑏/2
,
𝑡

𝑇
) = 2𝜋[𝜃0 cos (2𝜋

𝑡

𝑇
+ 𝜙) +

𝜋St
|𝑦|

𝑏/2
sin2𝜋

𝑡

𝑇

1+(𝜋St
|𝑦|

𝑏/2
cos2𝜋

𝑡

𝑇
)
2].            (10) 

For the case of 𝜙 = 90 deg, it follows that the derivative equals zero for 𝑡/𝑇 = 0, 0.5 and 1. The effective angle of 

attack at the start of the cycle and at the end of the cycle follow as 

  𝛼𝑒𝑓𝑓 (
𝑦

𝑏/2
,
𝑡

𝑇
) = 𝜃1 + 𝜃0 − arctan(𝜋St

|𝑦|

𝑏/2
), at 

𝑡

𝑇
= 0 and 1, whereas         (11) 

  𝛼𝑒𝑓𝑓 (
𝑦

𝑏/2
,
𝑡

𝑇
) = 𝜃1 − 𝜃0 + arctan(𝜋St

|𝑦|

𝑏/2
), at 

𝑡

𝑇
= 0.5.             (12) 
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Therefore, for the present case, at the wing tips, the minimum value of the effective angle of attack 𝛼𝑒𝑓𝑓,𝑚𝑖𝑛 =

−𝟑𝟔. 𝟒 deg at 𝑡/𝑇 = 0 and 1, while the maximum value equals 𝛼𝑒𝑓𝑓,𝑚𝑎𝑥 = 36.4 deg at t/T = 0.5. The rather high 

value of 36.4 deg for the instantaneous effective angle of attack at the wing tips is subject to uncertainties in the 

measured position of the tips of the (slightly flexible) wing of the wind-tunnel model. For increasing values of 𝜃0, 

these maximum and minimum values of 𝛼𝑒𝑓𝑓  decrease in magnitude. 

 The right plot of Fig. 4 presents the distribution of the effective angle of attack 𝛼𝑒𝑓𝑓 (
𝑦
1

2
𝑏
,
𝑡

𝑇
) as function of the 

spanwise coordinate 
𝑦
1

2
𝑏
, at six instants in time during half a flapping cycle. Since the angle of attack due to plunging 

decreases with decreasing y, the effect due to time-dependent part of the pitch and that due to the plunge cancel at a 

certain value of y along the span of the wing, so that here 𝛼𝑒𝑓𝑓 = 𝜃1. The spanwise location at which this occurs can 

be estimated from Eq. (8a) as first-order approximation: 
𝒚

𝒃/𝟐
≈

𝜃0

𝜋𝑆𝑡
, at all times. For the present set of parameters, it 

follows that |𝑦|/0.5b≈ 0.166. Subsequently, in the central part of the wing, 𝛼𝑒𝑓𝑓 = 𝛼𝑝𝑖𝑡𝑐ℎ + 𝛼𝑝𝑙𝑢𝑛𝑔𝑒, changes sign, 

as is the loading of the inboard sections: the effect of pitching dominates the effective angle of attack. So, for the first 

half of the flapping cycle, about 1/6-th of the span of the wing features a decreasing 𝛼𝑒𝑓𝑓 , while both outboard panels 

experience an increasing 𝛼𝑒𝑓𝑓 . For the second half of the cycle this is the other way around. As will be illustrated 

later, this will be have a clear effect on the topology of the vortex distribution of the wake of the wing.  

 The expression for 𝛼𝑒𝑓𝑓 (
𝑦

𝑏/2
,
𝑡

𝑇
), Eq. (8), shows that, to first approximation, the effective angle of attack is 

close to linear in the spanwise coordinate 
|𝑦|

𝑏/2
. This is confirmed in the right plot in Fig. 4.  

 

III. Computational Method 

In this section the computational method used to determine the lift, thrust, pitching moment and required power 

of the flapping/pitching wings of the Robird. 

A. Governing Equations 

In the present study, it is assumed that the flow is inviscid, incompressible, unsteady and irrotational. The latter 

implies that the vorticity �⃗⃗� ≡ ∇⃗⃗ × �⃗� = 0⃗  in the whole flow field, but for regions of infinitesimal extent. This enables 

the introduction of velocity potential Φ(𝑥, 𝑦, 𝑧, 𝑡), such that �⃗� (𝑥, 𝑦, 𝑧, 𝑡) ≡ ∇⃗⃗ Φ(𝑥, 𝑦, 𝑧, 𝑡), which satisfies the 

irrotationality condition implicitly. For incompressible flow the continuity equation reduces to the condition that the 

flow is divergence-free: ∇⃗⃗ . �⃗� = 0. Therefore ∇2Φ = 0, i.e., the velocity potential Φ(𝑥, 𝑦, 𝑧, 𝑡) satisfies Laplace’s 

equation: 

  
𝜕2Φ

𝜕𝑥2 +
𝜕2Φ

𝜕𝑦2 +
𝜕2Φ

𝜕𝑧2 = 0.                       (13) 

In the present case the wing is slender of high-aspect ratio AR, thin and mildly cambered. This allows the wing to 

be modelled as an infinitesimally-thin flat lifting surface Swi, like sketched in Fig. 5 (left). The wake is attached to the 

trailing edge (TE) as the time-dependent wavy surface Swa. For small-amplitude motion the lifting surface and its time-

dependent wake are projected on the plane z = 0, where linearized boundary conditions are imposed, e.g., [22]. The 

wing reference surface Swi + Swa, i.e., 𝑥 ∈ [0, 𝑐], 𝑦 ∈ [−𝑏/2, 𝑏/2] carries a dipole distribution 𝜇(𝑥, 𝑦, 𝑡) with the edge 

conditions 𝜇(𝑥 = 0, 𝑦, 𝑡) = 0 and 𝜇(𝑥, ±𝑏/2, 𝑡) = 0. The wake reference surface 𝑥 ∈ [𝑐,∞], 𝑦 ∈ [−𝑏/2, 𝑏/2] also 

carries a dipole distribution 𝜇(𝑥, 𝑦, 𝑡) with the edge condition 𝜇(𝑥, ±𝑏/2, 𝑡) = 0 and along the connection between 

wing and wake the continuity condition 𝜇(𝑐−, 𝑦, 𝑡) = 𝜇(𝑐+, 𝑦, 𝑡). Along the edge far downstream 𝜇(𝑥 = ∞, 𝑦, 𝑡) ≠
0, except for 𝑦 = ±𝑏/2, which corresponds to the vortex filament that formed at the very start of the motion of the 

wing, at t = 0+. 

The dipole distribution 𝜇(𝑥, 𝑦, 𝑡), a scalar quantity, is equivalent to a vortex distribution 𝛾 (𝑥, 𝑦, 𝑡), a surface-vector 

quantity, through the relation:  

  𝛾 (𝑥, 𝑦, 𝑡) = 𝑒 𝑛 × ∇⃗⃗ 𝜇,                       (14) 

Eq. (14) implies that the surface vector 𝛾  is tangential to the plane z = 0 and is simultaneously normal to the 

gradient ∇⃗⃗ 𝜇 of the dipole distribution on this plane. The vector ∇⃗⃗ 𝜇 is a surface-vector perpendicular to the iso-contours 

of the dipole distribution. Vortex lines, similar to streamlines, are defined as curves everywhere tangential to 𝛾 , so 

that Eq. (14) implies that vortex lines coincide with iso-dipole contours on the plane z = 0. So, conveniently, an iso-

dipole plot on the surface z = 0 is equivalent to a plot of vortex lines on the plane z = 0. 
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A discontinuity in the dipole distribution along some curve on the surface z = 0, corresponds to a vortex filament 

along this curve, with the strength of the vortex filament equal to the local value of the discontinuity in the dipole 

distribution. The formulation in terms of the dipole distribution intrinsically obeys Kelvin-Helmholtz’s vortex laws. 

Specifically, any vortex line on 𝑆(𝑥, 𝑦, 𝑡) is either a closed curve in itself, or a curve on 𝑆(𝑥, 𝑦, 𝑡) that feeds into a 

vortex filament and subsequently emerges from the vortex filament in order to form a closed vortex line. 

          
Fig. 5 Starboard side flapping-wing configuration at certain instant in cycle. Left: Flapping-pitching thin 

wing with wavy wake. Right: Stationary reference surface for application unsteady transpiration boundary 

conditions on wing and wake. Note that origin is on quarter-chord line QC. 

 

The velocity potential Φ(𝑥 , 𝑡), at time t at point 𝑥 , is split in the contribution 𝑈∞𝑥 due to the uniform free stream 

and a (perturbation) velocity potential 𝜑𝑑(𝑥 , 𝑡) due to the dipole distribution on 𝑆𝑤𝑖 + 𝑆𝑤𝑎 , i.e., 

 Φ(𝑥 , 𝑡) = 𝑈∞𝑥 + 𝜑𝑑(𝑥 , 𝑡), with 𝜑𝑑(|𝑥 | → ∞, 𝑡) → 0.             (15)  

 

The velocity potential 𝜑𝑑(𝑥 0, 𝑡) induced at 𝑥 0, at time t, by the dipole distribution 𝜇(𝑥 , 𝑡), on the surface 𝑆𝑤𝑖 +
𝑆𝑤𝑎, is obtained from the surface integral: 

  𝜑𝑑(𝑥 0, 𝑡) =
1

4𝜋
∬ 𝜇(𝑥 , 𝑡)

𝑒 𝑛.(𝑥 0−𝑥 )

|𝑥 0−𝑥 |3𝑆𝑤𝑖+𝑆𝑤𝑎
𝑑𝑆(𝑥 ),                (16) 

with 𝑥 = 𝑥𝑒 𝑥 + 𝑦𝑒 𝑦. In Eq. (16) 𝑒 𝑛 = 𝑒 𝑧 is the unit vector perpendicular to the surface 𝑆𝑤𝑖 + 𝑆𝑤𝑎, i.e., the plane 

z = 0, 𝜇(𝑥 , 𝑡) = 𝜇(𝑥, 𝑦, 𝑡) and 𝑑𝑆(𝑥 ) = 𝑑𝑥𝑑𝑦. 

 

The velocity �⃗� 𝑑(𝑥 0, 𝑡) = ∇⃗⃗ 𝜑𝑑(𝑥 0, 𝑡), induced by the dipole distribution 𝜇(𝑥, 𝑦, 𝑡) on 𝑆𝑤𝑖 + 𝑆𝑤𝑎 , follows from 

taking the derivative of Eq. (16) with respect to 𝑥 0. The derivation of obtaining ∇⃗⃗ 𝜑𝑑(𝑥 0, 𝑡) is given amongst others in 

Ref. 22. It yields: 

  �⃗� 𝑑(𝑥 0, 𝑡) =
1

4𝜋
∬

�⃗⃗� (𝑥,𝑦,𝑡)×(𝑥 0−𝑥 )

|𝑥 0−𝑥 |3𝑆𝑤𝑖+𝑆𝑤𝑎
𝑑𝑥𝑑𝑦 −

1

4𝜋
∫ 𝜇(𝑥, 𝑦, 𝑡)

(𝑥 0−𝑥 )×𝑑𝑙⃗⃗⃗⃗ (𝑥 )

|𝑥 0−𝑥 |3𝜕(𝑆𝑤𝑖+𝑆𝑤𝑎)
,     (17)  

with, in the first term 𝛾 (𝑥, 𝑦, 𝑡) = 𝑒 𝑧 × ∇⃗⃗ 𝜇, given in Eq. (14), the vortex distribution on the surface carrying the 

dipole distribution 𝜇(𝑥, 𝑦, 𝑡). The reference surface representing the wing and its wake, i.e., 𝑆𝑤𝑖 + 𝑆𝑤𝑎 , forms a vortex 

sheet in 3D space. The second term in Eq. (17) is recognised as the law of Biot and Savart for the velocity induced by 

a vortex filament in 3D space. In this case the vortex filament is along the boundary (i.e., the closed edge 𝜕(𝑆𝑤𝑖 +
𝑆𝑤𝑎) of the reference surface of the wing and its wake. The strength of the vortex filament equals the local strength 

𝜇(𝑥 ∈ 𝜕(𝑆𝑤𝑖 + 𝑆𝑤𝑎), 𝑡) of the dipole distribution, while 𝑑𝑙⃗⃗  ⃗(𝑥 ) is an infinitesimal element of the vortex filament. 

The surface integrals in Eqs. (16) and (17) are singular integrals, i.e., when 𝑥 0 → 𝑥 = 𝑥𝑒 𝑥 + 𝑦𝑒 𝑦, a point on the 

dipole/vortex sheet 𝑆𝑤𝑖 + 𝑆𝑤𝑎, the integrand of the surface integrals tend to infinity. However, the result of the 

evaluation of these integrals, i.e., the velocity potential and the velocity, is finite, though discontinuous. To obtain this 

result, the integrals are evaluated as Cauchy-Principle-Value (CPV) integrals [22].  

For 𝑥 0 ∈ 𝜕(𝑆𝑤𝑖 + 𝑆𝑤𝑎), the second term in Eq. (17) for the induced velocity due to the vortex filament, is singular, 

like 1/r, with 𝑟 → 0 the distance from the filament. For a curved vortex filament there is an additional singular term 

that behaves like lnr. In the present investigation both these terms are omitted from the induced velocity, or, rather 

avoided by limiting the distance to the filament to a certain cut-off value. 

The result of this CPV procedure for the velocity potential, 𝜑𝑑(𝑥 0, 𝑡) is that for 𝑥 0 ∈ 𝑆𝑤𝑖+𝑤𝑎(𝑥, 𝑦): 

  𝜑𝑑(𝑥 0, 𝑡) = ±
1

2
𝜇(𝑥0, 𝑦0, 𝑡) +

1

4𝜋
CPV∬ 𝜇(𝑥, 𝑦, 𝑡)

𝑒 𝑧.(𝑥 0−𝑥 )

|𝑥 0−𝑥 |3𝑆𝑤𝑖+𝑆𝑤𝑎
𝑑𝑥𝑑𝑦         (18) 

and for the induced velocity �⃗� 𝑑(𝑥 0, 𝑡): 
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�⃗� 𝑑(𝑥 0, 𝑡) = ±
1

2
𝛾 (𝑥0, 𝑦0, 𝑡) × 𝑒 𝑧 +

1

4𝜋
CPV∬

�⃗⃗� (𝑥,𝑦,𝑡)×(𝑥 0−𝑥 )

|𝑥 0−𝑥 |3𝑆𝑤𝑖+𝑆𝑤𝑎
𝑑𝑥𝑑𝑦 −

1

4𝜋
∫ 𝜇(𝑥, 𝑦, 𝑡)

(𝑥 0−𝑥 )×𝑑𝑙⃗⃗⃗⃗ (𝑥 )

|𝑥 0−𝑥 |3𝜕(𝑆𝑤𝑖+𝑆𝑤𝑎)
, (19) 

with 𝛾 × 𝑒 𝑧 = ∇⃗⃗ 𝜇 =
𝜕𝜇

𝜕𝑥
𝑒 𝑥 +

𝜕𝜇

𝜕𝑦
𝑒 𝑦. In Eqs. (18) and (19) the ± symbol indicates that the quantity is positive on the 

upper side of 𝑆𝑤𝑖+𝑤𝑎(𝑥, 𝑦) and negative on the lower side of 𝑆𝑤𝑖+𝑤𝑎(𝑥, 𝑦).  

B. Bernoulli’s Equation 

The momentum equation for inviscid, incompressible, irrotational flow, not subjected to a body force field, like 

gravity, reads: 

  
𝜕�⃗⃗� 

𝜕𝑡
+ ∇⃗⃗ 1

2
|�⃗� |2 + ∇⃗⃗ 

𝑝

𝜌∞
= 0⃗ .                      (20) 

Employing �⃗� = ∇⃗⃗ Φ, upon integration with respect to space, then results in Bernoulli’s equation for inviscid, 

incompressible, irrotational flow, not subjected to body forces, i.e., 

  
𝜕Φ

𝜕𝑡
+ 1

2
|∇⃗⃗ Φ|

2
+

𝑝

𝜌∞
= 𝐶(𝑡),                      (21) 

with C(t) independent of position in space, so, either a constant, or a function of time in the whole space. In the 

present case, the constant is evaluated in the far-field, which yields 𝐶(𝑡) = 𝐶 = 1

2
𝑈∞

2 +
𝑝∞

𝜌∞
, so that with Φ(𝑥 , 𝑡) =

𝑈∞𝑥 + 𝜑𝑑(𝑥 , 𝑡), ∇⃗⃗ Φ(𝑥 , 𝑡) = 𝑈∞𝑒 𝑥 + �⃗� 𝑑(𝑥 , 𝑡) and the pressure coefficient 𝐶𝑝(𝑥 , 𝑡) defined as 

  𝐶𝑝(𝑥 , 𝑡) ≡
𝑝(𝑥 ,𝑡)−𝑝∞

1

2
𝜌∞𝑈∞

2
,                        (22) 

  𝐶𝑝(𝑥 , 𝑡) = −
2

𝑈∞
2

𝜕𝜑𝑑

𝜕𝑡
− [2

𝑒 𝑥.�⃗⃗� 𝑑

𝑈∞
+

|�⃗⃗� 𝑑|2

𝑈∞
2 ].                  (23) 

For points on the wing and on the wake in the plane z = 0, it follows 

  𝐶𝑝(𝑥, 𝑦, 𝑡) = −
2

𝑈∞
2

𝜕𝜑𝑑

𝜕𝑡
−

2

𝑈∞
𝑢𝑑(𝑥, 𝑦, 𝑡) −

2

𝑈∞
2 |�⃗� 𝑑(𝑥, 𝑦, 𝑡)|2.             (24) 

In this expression, the first two terms are linear, while the third term is quadratic, which is neglected in the 

linearized formulation. 

C. Boundary Conditions 

In order to solve for the dipole distribution 𝜇(𝑥, 𝑦, 𝑡) on the wing Swi, the boundary condition is the normal-velocity 

condition, i.e., the no-penetration condition, given by 

  (�⃗� − �⃗� 𝑤𝑖). 𝑒 𝑛 = 0, for points on Swi,                   (25) 

which assures that, in normal direction, the wing surface moves at the same speed as the flow. In order to impose 

this condition, it has to be converted into a transpiration condition to be applied at the reference surface 𝑆𝑤𝑖 . In the 

present study, in which a lifting-line method has been developed, this is not needed, there are no explicit boundary 

conditions imposed on 𝑆𝑤𝑖. 

On the wake surface Swa, both the dipole distribution 𝜇(𝑥, 𝑦, 𝑡)  and the location of the wake surface Swa are to be 

solved for. Therefore, two boundary conditions have to be imposed: the normal-velocity boundary condition, Eq. (25) 

and the condition that the wake surface does not carry a load, i.e., that the pressure difference across the wake surface 

equals zero. Using Eq. (24), the latter condition, applied at Swa, yields: 

  ∆𝐶𝑝(𝑥, 𝑦, 𝑡) = −
2

𝑈∞
2

𝜕∆𝜑𝑑

𝜕𝑡
−

2

𝑈∞
∆𝑢𝑑(𝑥, 𝑦, 𝑡) −

2

𝑈∞
2 ∆[|�⃗� 𝑑(𝑥, 𝑦, 𝑡)|2], for points on Swa.     (26) 

 

D.  Prandtl’s Lifting-Line Method 

The lifting-line theory of Prandtl for high-aspect-ratio wings in steady, incompressible, irrotational (potential) 

flow, can be formulated in terms of the dipole/vortex-distribution described in section IV.A, see Fig. 5 (right). From 

Eq. (14) it follows that, on the reference surface z = 0 of the wing and its wake, the vortex distribution 𝛾 (𝑥, 𝑦) can be 

expressed in terms of the partial derivatives, with respect to x and y, of the dipole distribution 𝜇(𝑥, 𝑦) as: 

  𝛾 (𝑥, 𝑦) = 𝑒 𝑧 × ∇⃗⃗ 𝜇 = −
𝜕𝜇

𝜕𝑦
𝑒 𝑥 +

𝜕𝜇

𝜕𝑥
𝑒 𝑦.                   (27) 

The spanwise component 𝛾𝑦(𝑥, 𝑦) of the wing vortex distribution is lumped into the spanwise distribution of the 

section circulation Γ(𝑦) of the wing, through 

  Γ(𝑦) ≡ ∫ 𝛾𝑦(𝑥, 𝑦)𝑑𝑥
𝑐

0
= ∫

𝜕𝜇

𝜕𝑥
𝑑𝑥 = 𝜇(𝑐, 𝑦)

𝑐

0
, for 𝑦 ∈ [−𝑏/2, 𝑏/2],           (28) 
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where the (leading-)edge condition 𝜇(0, 𝑦) = 0 has been imposed. For each section 𝑦 = constant of the wing, the 

circulation Γ(𝑦) is positioned at the center-of-vorticity (COV) of the spanwise component of the vortex distribution 

𝛾𝑦(𝑥, 𝑦), with 

  𝑥𝐶𝑂𝑉(𝑦)Γ(𝑦) ≡ ∫ 𝑥𝛾𝑦(𝑥, 𝑦)𝑑𝑥
𝑐

0
.                     (29) 

 

Prandtl placed the circulation at the quarter-chord line of the wing, therefore here the spanwise distribution of the 

circulation of the wing is denoted as Γ(𝑦) = Γ𝑐/4(𝑦). Prandtl’s choice can be related to the classical complex-function 

solution of the incompressible 2D potential flow about a flat plate at angle of attack, e.g. [25]. Alternatively, it can be 

related to Prandtl’s thin-airfoil solution for incompressible 2D potential flow about thin airfoils at angle of attack, e.g. 

[26]. From these solutions it follows 𝛾𝑦(𝑥) = 𝐴√(𝑐 − 𝑥)/𝑥, with the constant A proportional to the free stream 

velocity 𝑈∞and the angle of attack. 

                           
Fig. 6 Prandtl’s lifting-line method for incompressible potential flow about high-aspect ratio wing at angle 

of attack. Note that origin coordinate system is on lifting line. 

 

Substitution of this solution in Eq. (29) leads to 𝑥𝐶𝑂𝑉 = 𝑐/4. The dipole distribution on the wing and wake in Fig. 

5 (right) is now, see Fig. 6: 

  𝜇(𝑥, 𝑦) = Γ𝑐/4(𝑦), for 𝑥 ∈ [0,∞) and 𝑦 ∈ [−𝑏/2, 𝑏/2],              (30) 

equivalent to a spanwise vortex filament of strength Γ𝑐

4
(𝑦), with Γ𝑐/4(±𝑏/2) = 0, and a continuous distribution 

of the chordwise component 𝛾𝑥(𝑦) = −
𝑑

𝑑𝑦
Γ𝑐/4(𝑦) of the vortex distribution on the region downstream of the lifting 

line. Finally, formally, there is also a vortex filament of strength −Γ𝑐/4(𝑦) along the line x = ∞, z = 0, for 𝑦 ∈

[−𝑏/2, 𝑏/2], the so-called start vortex, but its induced velocity at the lifting line is negligibly small. Note that a vortex 

line starting in the lifting-line running in spanwise direction, emerges at some point along the span, turns abruptly in 

chordwise direction, continues straight on until at infinity downstream it meets the start vortex filament. There it turns 

abruptly in negative y-direction and runs chordwise upstream, until it meets the lifting-line vortex filament, where it 

turns abruptly in positive y-direction until it arrives at its initial point, completing the closed circuit, obeying the 

Kelvin-Helmholtz vortex laws. 

In Prandtl’s lifting-line method the distribution of the circulation Γ𝑐/4(𝑦) along the lifting line is obtained from an 

integro-differential equation that evolves from an intricate combination of the relation for sectional lift ℓ(𝑦) [N/m], 

obtained from the Kutta-Joukowski Theorem for the force on a vortex filament and the expression for the sectional 

lift in terms of the slope 𝑎0 = 2𝜋 of the sectional lift vs angle-of-attack curve, obtained from thin-airfoil theory. 

The Kutta-Joukowski Theorem, provides the sectional lift ℓ(𝑦) in terms of the circulation Γ𝑐/4(𝑦) of the wing, the 

free-stream velocity 𝑈∞ and the density 𝜌∞, as 

  ℓ(𝑦) = 𝜌∞𝑈∞Γ𝑐/4(𝑦).                        (31) 

Thin-airfoil theory gives the lift coefficient 𝑐ℓ(𝑦) in terms of the slope 
𝑑

𝑑𝛼
𝑐ℓ(𝑦) = 𝑎0(𝑦) of the lift curve 𝑐ℓ(𝛼), 

the dynamic pressure 𝑞∞ = 1

2
𝜌∞𝑈∞

2 , the chord c(y) of the airfoil section and the effective angle of attack of the airfoil 

section: 

  ℓ(𝑦) ≡ 1

2
𝜌∞𝑈∞

2 𝑐ℓ(𝑦)𝑐(𝑦),                       (32) 

with the lift coefficient 𝑐ℓ(𝑦) expressed as 

  𝑐ℓ(𝑦) = 𝑎0(𝑦)(𝛼 − 𝛼0(𝑦) + 𝛽(𝑦) +
𝑤𝑖𝑛(𝑦)

𝑈∞
),                 (33) 
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with α the geometric angle of attack of the wing, 𝛼0(𝑦) the zero-lift angle of attack of the airfoil section at the 

spanwise section 𝑦 considered, β(y) the spanwise distribution of the twist angle of the wing, with at the root of the 

wing 𝛽(0) = 0 and finally, win(y) the z-component of the velocity induced at the lifting line by the trailing vortex 

sheet. Combining Eqs. (31)-(33) yields 

  Γ𝑐

4
(𝑦) =

1

2
𝑈∞𝑐(𝑦)𝑎0(𝑦)[𝛼 − 𝛼0(𝑦) + 𝛽(𝑦) +

𝑤𝑖𝑛(𝑦)

𝑈∞
], for 𝑦 ∈ [−𝑏/2, 𝑏/2]         (34) 

The upwash 𝑤𝑖𝑛(𝑦), induced by the chordwise vortex distribution 𝛾𝑥(𝑦) = −
𝑑

𝑑𝑦
Γ𝑐/4(𝑦) on the trailing vortex 

sheet, (𝑥 ∈ [0,∞), 𝑦 ∈ [−𝑏/2, 𝑏/2], 𝑧 = 0), see Fig. 6, follows from Eq. (19) as 

  𝑤𝑑(𝑥0, 𝑦0, 𝑧0 = 0) =
1

4𝜋
CPV∫ [−(𝑦0 − 𝑦)

𝑑

𝑑𝑦
Γ𝑐/4(𝑦) ∫

𝑑𝑥

[(𝑥0−𝑥)2+(𝑦0−𝑦)2]3/2

∞

0
] 𝑑𝑦

𝑏/2

−𝑏/2
  

The integral with respect to x can be evaluated analytically, which leads to 

  𝑤𝑑(𝑥0, 𝑦0, 𝑧0 = 0) =
−1

4𝜋
CPV ∫

1

𝑦0−𝑦

𝑑

𝑑𝑦
Γ𝑐/4(𝑦) [1 +

𝑥0

[𝑥0
2+(𝑦0−𝑦)2]1/2] 𝑑𝑦

𝑏/2

−𝑏/2
. 

The upwash to be substituted in Eq. (34) equals 𝑤𝑖𝑛(𝑦0) = 𝑤𝑑(𝑥0 = 0, 𝑦0, 𝑧0 = 0), so that 

  𝑤𝑖𝑛(𝑦) =
−1

4𝜋
CPV ∫

1

𝑦−𝜂

𝑑

𝑑𝜂
Γ𝑐/4(𝜂)𝑑𝜂

𝑏/2

−𝑏/2
. 

Substitution in Eq. (34) yields Prandtl’s integro-differential equation for the unknown spanwise distribution of the 

section circulation Γ𝑐/4(𝑦): 

  Γ𝑐/4(𝑦) =
1

2
𝑈∞𝑐(𝑦)𝑎0(𝑦)[𝛼 − 𝛼0(𝑦) + 𝛽(𝑦) −

1

4𝜋𝑈∞
CPV∫

1

𝑦−𝜂

𝑑

𝑑𝜂
Γ𝑐/4(𝜂)𝑑𝜂

𝑏

2

−
𝑏

2

], for 𝑦 ∈ [−𝑏/2, 𝑏/2]. (35) 

E. Kutta-Joukowski Theorem for Unsteady Flow 

The flow about a flapping wing is an unsteady flow problem. In the case of unsteady, incompressible, potential 

flow, Laplace’s equation, Eq. (13), is the governing equation for the velocity potential, like for steady, incompressible, 

potential flow. The unsteadiness enters the problem through the boundary conditions, i.e., the motion of the wing. 

Furthermore, as a consequence of the temporal variation of the circulation, the wake is now a vortex sheet of strength 

depending on the history of the circulation of the wing, i.e., of the history of the motion of the wing.  

For unsteady flow, Eq. (31) has to be adjusted since the classical Kutta-Joukowski Theorem is for steady flow 

only. For unsteady potential flow, Eq (24) for the pressure coefficient 𝐶𝑝(𝑥, 𝑦, 𝑡) has been derived from the momentum 

equation for unsteady, incompressible potential flow. From Eq. (24) the pressure jump across the wing reference 

surface Swi is derived, to first order in the perturbations, as: 

  ∆𝐶𝑝(𝑥, 𝑦, 𝑡) ≡
𝑝(𝑥,𝑦,𝑧=0−)−𝑝(𝑥,𝑦,𝑧=0+)

1
2𝜌∞𝑈∞

2 =
2

𝑈∞
[
𝜕Δ𝜑

𝜕𝑥
+

1

𝑈∞

𝜕Δ𝜑

𝜕𝑡
] + ℎ. 𝑜. 𝑡.,          

 (36) 

with 𝜑(𝑥, 𝑦, 𝑧, 𝑡) the perturbation velocity potential and Δ𝜑 ≡ 𝜑(𝑥, 𝑦, 𝑧 = 0+) − 𝜑(𝑥, 𝑦, 𝑧 = 0−). In the present 

formulation the reference surface 𝑆𝑤𝑖 + 𝑆𝑤𝑎 of the wing and the wake, carry a dipole distribution 𝜇(𝑥, 𝑦, 𝑡), so that 

the jump in the perturbation potential can be expressed as Δ𝜑(𝑥, 𝑦, 0, 𝑡) = 𝜇(𝑥, 𝑦, 𝑡). Then Eq. (36) becomes 

  Δ𝐶𝑝(𝑥, 𝑦, 0, 𝑡) =
2

𝑈∞
[
𝜕𝜇

𝜕𝑥
+

1

𝑈∞

𝜕𝜇

𝜕𝑡
]                    (37) 

To derive an expression for the Kutta-Joukowski Theorem for unsteady flow about thin wings, the pressure 

difference, given in Eq. (37), is integrated along the section of the wing reference surface, situated in the plane z = 0, 

i.e., 

  
ℓ(𝑦,𝑡)

1

2
𝜌∞𝑈∞

2 𝑐(𝑦)
=

1

𝑐(𝑦)
∫ Δ𝐶𝑝(𝑥, 𝑦, 𝑡)𝑑𝑥

𝑐(𝑦)

0
=

2

𝑐(𝑦)𝑈∞
∫ [

𝜕𝜇

𝜕𝑥
+

1

𝑈∞

𝜕𝜇

𝜕𝑡
]𝑑𝑥

𝑐(𝑦)

0
.           (38) 

Since, ∫
𝜕𝜇

𝜕𝑥
(𝑥, 𝑦, 𝑡)𝑑𝑥

𝑐(𝑦)

0
= 𝜇(𝑐(𝑦), 𝑦, 𝑡) = ∫ 𝛾𝑦(𝑥, 𝑦, 𝑡)𝑑𝑥

𝑐(𝑦)

0
= Γ(𝑦, 𝑡), it follows: 

  
ℓ(𝑦,𝑡)

1

2
𝜌∞𝑈∞

2 𝑐(𝑦)
=

2

𝑐(𝑦)𝑈∞
[Γ(𝑦, 𝑡) +

1

𝑈∞

𝜕

𝜕𝑡
∫ 𝜇(𝑥, 𝑦, 𝑡)𝑑𝑥

𝑐(𝑦)

0
]               (39) 

Consider the remaining integral in Eq. (39). Partial integration gives, with 
𝜕𝜇

𝜕𝑥
= 𝛾𝑦: 

∫ 𝜇(𝑥, 𝑦, 𝑡)𝑑𝑥
𝑐(𝑦)

0
= [𝜇(𝑥, 𝑦, 𝑡)𝑥]|0

𝑐(𝑦)
− ∫ 𝑥

𝜕

𝜕𝑥
𝜇(𝑥, 𝑦, 𝑡)𝑑𝑥

𝑐(𝑦)

0
= Γ(𝑦, 𝑡)𝑐(𝑦) − ∫ 𝑥𝛾𝑦(𝑥, 𝑦, 𝑡)𝑑𝑥

𝑐(𝑦)

0
. 

Therefore, with the definition of the center-of-gravity of the spanwise component of the vortex distribution, defined 

in Eq. (29), Eq. (39) results in  
ℓ(𝑦,𝑡)

1

2
𝜌∞𝑈∞

2 𝑐(𝑦)
=

2

𝑐(𝑦)𝑈∞
[Γ(𝑦, 𝑡) +

1

𝑈∞

𝜕

𝜕𝑡
{Γ(𝑦, 𝑡)𝑐(𝑦) {1 −

𝑥COV(𝑦,𝑡)

𝑐(𝑦)
}]            (40) 

Similar to the argumentation following Eq. (29), it is assumed that 
𝑥COV(𝑦,𝑡)

𝑐(𝑦)
≈

1

4
. Then it follows 
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ℓ(𝑦,𝑡)

1

2
𝜌∞𝑈∞

2 𝑐(𝑦)
=

2

𝑐(𝑦)𝑈∞
[Γ(𝑦, 𝑡) +

3

4

𝑐(𝑦)

𝑈∞

𝜕

𝜕𝑡
Γ(𝑦, 𝑡)],  

so that the Kutta-Joukowski Theorem for unsteady flow reads: 

  𝑙(𝑦, 𝑡) = 𝜌∞𝑈∞ [Γ(𝑦, 𝑡) +
3

4

𝑐(𝑦)

𝑈∞

𝜕

𝜕𝑡
Γ(𝑦, 𝑡)].                  (41) 

In Eq. (41) the first term is the conventional term for the lift due to the circulation of the airfoil section, while the 

second term is the contribution to the lift of the added-mass effect induced by the motion of the wing section. 

The relation presented in Eq. (41) is different from the relation for the section lift coefficient as for example given 

in [27], which instead of the factor 
𝟑

𝟒
 features the factor 1.0 in the added-mass contribution to the section lift.  

F. Lifting-Line Method for Unsteady Flow 

For the case of steady flow, the lifting-line integro-differential equation follows from the combination of Eqs. (31), 

(32) and (33). For unsteady flow, the classical Kutta-Joukowski Theorem Eq. (31), is replaced by its unsteady variant. 

Then Eq. (34) becomes 

Γ𝑐/4(𝑦, 𝑡) +
3

4

𝑐(𝑦)

𝑈∞

𝜕

𝜕𝑡
Γ𝑐/4(𝑦, 𝑡) =

1

2
𝑈∞𝑐(𝑦)𝑎0(𝑦)[𝛼𝑒𝑓𝑓(𝑦, 𝑡) − 𝛼0(𝑦) + 𝛽(𝑦) +

𝑤𝑖𝑛(𝑦,𝑡)

𝑈∞
],      (42) 

for 𝑦 ∈ [−𝑏/2, 𝑏/2] and t > 0.  

In Eq. (42) the upwash 𝑤𝑖𝑛(𝑦, 𝑡) due to the dipole distribution on the wing between the lifting line at x = c(y) /4 

and the trailing edge 𝑥 = 𝑥𝑇𝐸
− = 𝑐(𝑦), together with the dipole distribution on on the wake, which runs from 𝑥 =

𝑥𝑇𝐸
+ = 𝑐(𝑦), to infinity downstream, see Fig. 5-right, equals 

𝑤𝑖𝑛(𝑦, 𝑡) =
1

4𝜋
∫ 𝑑𝜂[∫

(𝑦−𝜂)𝛾𝑥(𝜂,𝑡)

[𝑥2+(𝑦−𝜂)2]
3
2

𝑐(𝑦)

𝑐(𝑦)/4

𝑏

2

−
𝑏

2

𝑑𝑥 + ∫
(𝑦−𝜂)𝛾𝑥(𝑥,𝜂,𝑡)+𝑥𝛾𝑦(𝑥,𝜂,𝑡)

[𝑥2+(𝑦−𝜂)2]
3
2

∞

𝑐(𝑦)
𝑑𝑥], for 𝑦 ∈ [−𝑏/2, 𝑏/2].  (43) 

Note that between the lifting line at x = c /4 and the trailing edge at x = c, the wing reference surface carries a 

dipole distribution 𝜇(𝑥, 𝑦, 𝑡) = Γ𝑐/4(𝑦, 𝑡), which corresponds to a vortex distribution with a chordwise component 

𝛾𝑥(𝑦, 𝑡) only.  

Equation (43) is an integro-differential equation for Γ𝑐/4(𝑦, 𝑡). However, now the situation is more complicated 

than for the case of steady flow in that the strength (circulation) Γ𝑐/4(𝑦, 𝑡) of the lifting line is time-dependent, while 

the wake carries a dipole distribution 𝜇(𝑥, 𝑦, 𝑡) that depends not only on y, but on x, y and t, so that for the wake the 

contribution from both components of the vortex distribution, i.e., 𝛾𝑥 = −
𝜕𝜇

𝜕𝑦
 and 𝛾𝑦 =

𝜕𝜇

𝜕𝑥
, have to be considered. 

G. Boundary Conditions on Wake 

The wake is subject to two boundary conditions, see section IV.B. In the present study, the condition that the wake 

surface should be a stream surface, Eq. (25), is omitted since the true wake surface is not part of the formulation, i.e., 

just the wake reference surface z = 0 is considered. Note that once the dipole distribution has been determined, the 

planar wake reference surface features a distribution of non-zero normal velocity that might be used to update the 

geometry of the wake surface in an iterative manner. 

The second condition, Eq. (26), that across the wake the jump in pressure Δ𝐶𝑝 equals zero, is employed to 

determine the spatial and temporal strength of the wake dipole distribution. Equation (37) applied to the wake 

reference surface reads: 

  Δ𝐶𝑝(𝑥 > 𝑥𝑇𝐸 , 𝑦, 𝑡) =
2

𝑈∞
[
𝜕𝜇

𝜕𝑥
+

1

𝑈∞

𝜕𝜇

𝜕𝑡
] = 0, for 𝑦 ∈ [−𝑏/2, 𝑏/2] and t > 0.         (44) 

Eq. (44) is recognized as a first-order wave equation in (x,t)-space, for 𝜇(𝑥, 𝑦, 𝑡) convecting with constant velocity 

𝑈∞ in x-direction. Then it follows that at time t the solution 𝜇(𝑥, 𝑦, 𝑡) equals:  

  𝜇(𝑥, 𝑦, 𝑡) = Γ𝑐/4 (𝑦, 𝑡 −
𝑥−𝑥𝑇𝐸

𝑈∞
), for 𝑥 ∈ [𝑥𝑇𝐸

+ , 𝑥𝑇𝐸
+ + 𝑈∞𝑡], 𝑦 ∈ [−𝑏/2, 𝑏/2] and t > 0.     (45) 

 

The classical Lifting-Line method does not require a Kutta condition at the trailing edge: Actually, in its problem 

formulation does not feature the solid part of the wing nor the trailing edge. For the unsteady-flow version of the 

lifting-line method there is a trailing edge, at x = c, which forms the connection between the wing and the wake. This 

implies that a Kutta condition is to be imposed. The condition is that at the trailing edge, the pressure difference 

between upper and lower side of the surface equals zero at all times. This implies that the linearized equation given in 

Eq. (44) is not only applied on the wake surface, but also at the trailing edge of the wing. Therefore, the Kutta condition 

for unsteady flow reads:  

  Δ𝐶𝑝(𝑥 = 𝑥𝑇𝐸
− = 𝑐, 𝑦, 𝑡) =

2

𝑈∞
[
𝜕𝜇

𝜕𝑥
+

1

𝑈∞

𝜕𝜇

𝜕𝑡
] = 0, i.e., 

𝜕𝜇

𝜕𝑥
+

1

𝑈∞

𝜕𝜇

𝜕𝑡
= 0,           (46) 
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for 𝑥 = 𝑥𝑇𝐸
− = 𝑐, 𝑧 = 0, along the span of the trailing edge, for all times. 

H. Spanwise Distributions Section Lift, Drag and Pitching Moment 

The spanwise distribution of the section lift ℓ(𝑦, 𝑡) is given in Eq. (41), repeated here, in terms of the unsteady 

Kutta-Joukowski Theorem.  

  𝑙(𝑦, 𝑡) = 𝜌∞𝑈∞ [Γ𝑐/4(𝑦, 𝑡) +
3

4

𝑐(𝑦)

𝑈∞

𝜕

𝜕𝑡
Γ𝑐/4(𝑦, 𝑡)].                 (41) 

The section drag 𝑑(𝑦, 𝑡) follows from application of the Kutta-Joukowski Theorem to the lifting-line vortex 

filament subject to an upwash velocity component: 

𝑑(𝑦, 𝑡) = −𝜌∞𝑈∞ [
𝑤𝑖𝑛(𝑦,𝑡)

𝑈∞
−

1

𝑈∞

𝜕ℎ(𝑦,𝑡)

𝜕𝑡
] Γ𝑐/4(𝑦, 𝑡)                (47) 

The term inside the square brackets is the velocity in z-direction, relative to the flapping motion of the lifting line, 

consisting of the contribution induced by the dipole distribution on the wing and on the wake, with the upwash 

corrected for the time-derivative of the position of the lifting line. Once the circulation distribution of the lifting-line 

has been determined from the Unsteady-Lifting-Line integro-differential equation, Eq. (42), the velocity induced at 

the lifting line by the dipole distribution follows as 
𝑤𝑖𝑛(𝑦,𝑡)

𝑈∞
=

2

𝑎0(𝑦)

𝑐̅

𝑐(𝑦)

1

𝑈∞𝑐̅
[Γ𝑐/4(𝑦, 𝑡) +

3

4

𝑐(𝑦)

𝑈∞

𝜕

𝜕𝑡
Γ𝑐/4(𝑦, 𝑡)] − [𝛼𝑒𝑓𝑓(𝑦, 𝑡) − 𝛼0(𝑦) + 𝛽(𝑦)]      (48) 

Equation (4) gives the effective angle of attack 𝛼𝑒𝑓𝑓(𝑦, 𝑡) as the sum of the pitch angle 𝜃(𝑡) and the plunge angle 

−
1

𝑈∞

𝜕ℎ(𝑦,𝑡)

𝜕𝑡
. Substitution in Eq. (47) yields: 

𝑑(𝑦, 𝑡) = −𝜌∞𝑈∞Γ𝑐/4(𝑦, 𝑡) [
2

𝑎0(𝑦)

𝑐̅

𝑐(𝑦)

1

𝑈∞𝑐̅
{Γ𝑐/4(𝑦, 𝑡) +

3

4

𝑐(𝑦)

𝑈∞

𝜕

𝜕𝑡
Γ𝑐/4(𝑦, 𝑡)} − {𝜃(𝑡) − 𝛼0(𝑦) + 𝛽(𝑦)}]   (49) 

The section lift coefficient 𝑐𝑙(𝑦, 𝑡) and section drag coefficient 𝑐𝑑(𝑦, 𝑡) then follow by dividing left- and right-

hand side of Eqs. (41) and (49), respectively, by 1
2
𝜌∞𝑈∞

2 𝑐(𝑦), i.e.: 

  𝑐ℓ(𝑦, 𝑡) = 2 [
𝑐̅

𝑐(𝑦)

Γ𝑐/4(𝑦,𝑡)

𝑈∞𝑐̅
+

3

4

𝑐̅

𝑈∞

𝜕

𝜕𝑡

Γ𝑐/4(𝑦,𝑡)

𝑈∞𝑐̅
] and 𝑐𝑑(𝑦, 𝑡) = −2

𝑐̅

𝑐(𝑦)
[
𝑤𝑖𝑛(𝑦,𝑡)

𝑈∞
−

1

𝑈∞

𝜕

𝜕𝑡
ℎ(𝑦, 𝑡)]

Γ𝑐/4(𝑦,𝑡)

𝑈∞𝑐̅
.  (50) 

 

The section pitching moment 𝑐𝑚(𝑦, 𝑡), around the quarter-chord line 𝑥 = 𝑥𝑐

4
, z = 0, is defined as: 

𝑚(𝑦, 𝑡) = −
1

2
𝜌∞𝑈∞

2 ∫ Δ𝐶𝑝(𝑥, 𝑦, 0, 𝑡)(𝑥 − 𝑥𝑐

4
)

𝑐

0
𝑑𝑥, positive clockwise,            (51a) 

with Δ𝐶𝑝(𝑥, 𝑦, 0, 𝑡) given in Eq. (37). Then the section pitching moment coefficient equals 

𝑐𝑚(𝑦, 𝑡) ≡
𝑚(𝑦,𝑡)

1

2
𝜌∞𝑈∞

2 𝑐(𝑦)2
= −

1

𝑐(𝑦)2
∫ Δ𝐶𝑝(𝑥, 𝑦, 0, 𝑡)(𝑥 − 𝑥𝑐

4
)

𝑐

0
𝑑𝑥.                 (51b) 

Substitution of Eq. (37) yields 

𝑐𝑚(𝑦, 𝑡) = −
2

𝑈∞𝑐(𝑦)2
∫ (𝑥 − 𝑥𝑐

4
)

𝑐

0

𝜕𝜇

𝜕𝑥
𝑑𝑥 −

2

𝑈∞
2 𝑐(𝑦)2

𝜕

𝜕𝑡
∫ (𝑥 − 𝑥𝑐

4
)

𝑐

0
𝜇𝑑𝑥  

= −
2

𝑈∞𝑐(𝑦)2
[𝑖1(𝑦, 𝑡) − 𝑥𝑐

4
𝑖0(𝑦, 𝑡)] −

2

𝑈∞
2 𝑐(𝑦)2

𝜕

𝜕𝑡
[𝑗1(𝑦, 𝑡) − 𝑥𝑐

4
𝑗0(𝑦, 𝑡)]          (51c) 

The four integrals are evaluated as: 

𝑖0(𝑦, 𝑡) = ∫
𝜕𝜇

𝜕𝑥

𝑐

0
𝑑𝑥 = [𝜇(𝑥, 𝑦, 𝑡)]|0

𝑐 = Γ(𝑦, 𝑡), 

since at the leading edge 𝜇(𝑥 = 0, 𝑦, 𝑡) = 0, while at the trailing edge: 𝜇(𝑥 = 𝑐, 𝑦, 𝑡) = Γ(𝑦, 𝑡). 

𝑖1(𝑦, 𝑡) = ∫
𝜕𝜇

𝜕𝑥

𝑐

0
𝑥𝑑𝑥 = ∫ 𝛾𝑦(𝑥, 𝑦, 𝑡)

𝑐

0
𝑥𝑑𝑥 = Γ(𝑦, 𝑡)𝑥𝐶𝑂𝑉 , 

with the “center-of-vorticity” (COV), defined in Eq. (29). 

𝑗0(𝑦, 𝑡) = ∫ 𝜇(𝑥, 𝑦, 𝑡)
𝑐

0
𝑑𝑥 = [(𝑥𝜇(𝑥, 𝑦, 𝑡)]|0

𝑐 − ∫
𝜕𝜇

𝜕𝑥
(𝑥, 𝑦, 𝑡)

𝑐

0
𝑥𝑑𝑥  

= 𝑐Γ(𝑦, 𝑡) − 𝑥𝐶𝑂𝑉Γ(𝑦, 𝑡) = (𝑐 − 𝑥𝐶𝑂𝑉)Γ(𝑦, 𝑡). 

Finally, 

𝑗1(𝑦, 𝑡) = ∫ 𝜇(𝑥, 𝑦, 𝑡)
𝑐

0
𝑥𝑑𝑥 = [(

1

2
𝑥2𝜇(𝑥, 𝑦, 𝑡)]|

0

𝑐

−
1

2
∫

𝜕𝜇

𝜕𝑥
(𝑥, 𝑦, 𝑡)

𝑐

0
𝑥2𝑑𝑥  

=
1

2
𝑐2Γ(𝑦, 𝑡) −

1

2
𝑥𝐶𝑂𝑉2

2 Γ(𝑦, 𝑡),  

with the second moment of the spanwise component of the vortex distribution 𝛾𝑦(𝑥, 𝑦, 𝑡), defined as: 

𝑥𝐶𝑂𝑉2
2 Γ(𝑦, 𝑡) = ∫ 𝛾𝑦(𝑥, 𝑦, 𝑡)𝑥2𝑐

0
𝑑𝑥.                    (51d) 

Substitution of the integrals in the expression for the section pitching moment, Eq. (50c), yields: 

𝑐𝑚(𝑦, 𝑡) = −
2

𝑈∞𝑐(𝑦)2
(𝑥𝐶𝑂𝑉 − 𝑥𝑐

4
)Γ(𝑦, 𝑡) −

2

𝑈∞
2 𝑐(𝑦)2

𝜕

𝜕𝑡
[Γ(𝑦, 𝑡){

1

2
(𝑐2 − 𝑥𝐶𝑂𝑉2

2 ) − 𝑥𝑐

4
(𝑐 − 𝑥𝐶𝑂𝑉)}].   (51e) 
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Assuming that the distribution of the spanwise component of the vortex distribution behaves like that of a thin 

airfoil, i.e., 𝛾𝑦(𝑥) = 𝐴√(𝑐 − 𝑥)/𝑥, it follows 𝑥𝐶𝑂𝑉2 =
𝑐

4
√2. So, with 𝑥𝑐

4
=

𝑐

4
 and 𝑥𝐶𝑂𝑉 =

𝑐

4
, it follows 

  𝑐𝑚(𝑦, 𝑡) = −
1

2

1

𝑈∞
2

𝜕

𝜕𝑡
Γ(𝑦, 𝑡)                     (51f) 

This shows that the section pitching moment is zero for steady flow, whereas for unsteady flow the pitch8ing 

moment is due to the added-mass term only. 

I. Spanwise Distribution Power Required for Pitching and Flapping 

The power required for flapping/pitching flight is the sum of the power required for pitching and the power 

required for flapping. The pitching motion 𝜃(𝑡) of the wing (sections), around the pitch axis (the quarter-chord line) 

is defined in Eq. (2). The flapping motion 𝛾(𝑡), around the 𝑥-axis of the configuration, is defined in Eq. (1). 

For pitching, the section power 𝑝𝑝(𝑦, 𝑡) required to rotate the wing section around the pitch axis, per unit length 

in spanwise direction, is minus the product of the section pitching moment 𝑚(𝑦, 𝑡) and the rate of pitching �̇�(𝑡), i.e.: 

𝑝𝑝(𝑦, 𝑡) = −𝑚(𝑦, 𝑡)
𝑑𝜃

𝑑𝑡
,                       (52a) 

with [𝑝𝑝] = W/m, [m] = Nm/m and 𝜃 in radians. In the form of the power coefficient 𝑐𝑝,𝑝(𝑦, 𝑡), one obtains the 

contribution of pitching to the section power coefficient, as: 

𝑐𝑝,𝑝(𝑦, 𝑡) ≡
𝑝𝑝(𝑦,𝑡)

1

2
𝜌∞𝑈∞

3 𝑐(𝑦)
= −

𝑚(𝑦,𝑡)
1

2
𝜌∞𝑈∞

2 𝑐2(𝑦)

𝑐(𝑦)

𝑈∞

𝑑𝜃

𝑑𝑡
= −𝑐𝑚(𝑦, 𝑡)

𝑐(𝑦)

𝑈∞

𝑑𝜃

𝑑𝑡
.               (52b) 

For flapping, the section power 𝑝𝑓(𝑦, 𝑡) required to rotate the wing around the flap angle axis, per unit length in 

spanwise direction, is minus the product of the section lift ℓ(𝑦, 𝑡), the lever |𝑦| and the rate of flapping �̇�(𝑡), i.e.: 

𝑝𝑓(𝑦, 𝑡) = −ℓ(𝑦, 𝑡)|𝑦|
𝑑𝛾

𝑑𝑡
,                      (53a) 

with [𝑝𝑓] = W/m, [ℓ] =N/m and 𝛾 in radians. In the form of the power coefficient 𝑐𝑝,𝑓(𝑦, 𝑡), one obtains the 

contribution of flapping to the section power coefficient, as: 

𝑐𝑝,𝑓(𝑦, 𝑡) ≡
𝑝𝑓(𝑦,𝑡)

1

2
𝜌∞𝑈∞

3 𝑐(𝑦)
= −

ℓ(𝑦,𝑡)
1

2
𝜌∞𝑈∞

2 𝑐(𝑦)

|𝑦|

𝑏/2

𝑏/2

𝑈∞

𝑑𝛾

𝑑𝑡
= −𝑐ℓ(𝑦, 𝑡)

|𝑦|

𝑏/2

𝑏/2

𝑈∞

𝑑𝛾

𝑑𝑡
.              (53b) 

IV. Application Unsteady Lifting-Line Method 

A. Simplified Geometry Wing Robird 
The spanwise distribution of the chord c(y) of the Robird wing (Fig. 1) has been simplified to a piece-wise linear 

distribution, symmetric with respect to the plane-of-symmetry y = 0. The half-span is subdivided in three parts: 

𝑦 ∈ [0.0, 0.182] m     : 𝑐(𝑦) = 0.2 m 

𝑦 ∈ [0.182, 0.476] m: 𝑐(𝑦) = [0.200(0.476 − 𝑦) + 0.102(𝑦 − 0.182)]/0.294 m 

𝑦 ∈ [0.476, 0.560] m: 𝑐(𝑦) = [0.102(0.560 − 𝑦) + 0.010(𝑦 − 0.476)]/0.084 m 

 

The distribution of the chord of the wing is shown in Fig. 7. The dimensions of the wing planform are provided in 

Table 1.  

 
Fig. 7 Spanwise distribution of chord 𝒄(𝒚/𝟎. 𝟓𝒃) of simplified planform of wind-tunnel model Robird.  

 

Table 1 Geometric parameters of simplified flapping-wing configuration. 

b 1.12 m 

c0 0.2 m 

�̅�  0.1527 m 

AR 7.34 
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 For reasons of convenience of modeling, the wing of the simplified configuration extends from the root of the 

wind-tunnel model to the plane of symmetry y = 0, i.e., the gap between the root of the wind-tunnel model and the 

fuselage of the configuration is closed and the wing span runs from the plane of symmetry to the wing tip. 

For the wind-tunnel model the axis of rotation of the flapping motion is located at a distance of 0.04 m from the 

plane of symmetry of the configuration. For the simplified configuration the axis of rotation of the flapping motion of 

the wing is located in the plane of symmetry, i.e., along the x-axis.  

B. Parameters of Flapping-Wing Motion 
 The present Unsteady Lifting-Line Method has been applied to simulate the flow about the flapping wing of the 

wind-tunnel model of the Robird [19, 21, 22]. The wind-tunnel model has been tested for a number of sets of kinematic 

parameters for a few combinations of free-stream conditions. Table 2 provides a list of values of the parameters for 

which computational results have been obtained. Note that the flapping frequency 𝑓 Hz and free-stream velocity 𝑈∞ 

m/s are combined, with the excursion of the wing tip 2h0 (which is proportional to 𝛾0)  in the Strouhal number St., see 

Eq. (8b). The experiments focus on St = 0.19, 0.24 and 0.3343. 

 

 Table 2 Flapping wing parameters used in wind-tunnel tests. 

𝛾1 7.5 deg 2ℎ0(|𝑦|/0.5𝑏 = 1) 0.67 m 

𝛾0 34.2 deg St 0.001, 0.01, 0.025, 0.05, 

0.1, 0.15, 0.19, 0.24, 0.3, 

0.3343, 0.4 

𝜃1 0   

𝜃0 0(2.5)20 deg   

𝜙 90 deg   

 

Dimension analysis shows that, using (𝜌∞, 𝑈∞, 𝑏), the dimensionless aerodynamic properties A of the flapping 

wing motion can be expressed as 𝐴 = 𝐴(𝑆𝑡, 𝜃0, 𝛾1, 𝜃1, 𝜙, AR) and airfoil characteristics a0 and 𝛼0. In the present study 

the focus is on the dependency of the aerodynamic properties on the amplitude of the pitching motion 𝜃0 and on the 

Strouhal number St. 

 

C. Discretization flapping-wing configuration 
For the purpose of application of the present Unsteady-Lifting-Line method to the simplified flapping-wing 

configuration, the linearized (transpiration type of) boundary conditions are imposed on a rectangular domain of span 

b and chord 𝑐̅ in the plane z = 0, but, the effect of varying chord c(y) is retained in the formulation. The free-stream 

velocity is parallel to this plane, directed in positive x-direction (α = 0). 

The lifting line of the simplified flapping-wing configuration is located along the quarter-chord line (𝑥 = 0,y ∈ [-

b/2,b/2],z = 0). The trailing edge (TE) is located at (𝑥 = 3𝑐̅/4,y ∈ [-b/2,b/2],z = 0). The lifting line is divided into N = 

80 elements, here in a uniform distribution. The chord c(y) of the airfoil sections and the effective angle of attack 

𝛼𝑒𝑓𝑓(𝑦, 𝑡) are assigned to the mid-points (collocation points) of the N elements on the lifting line. The circulation 

Γ𝑐/4(𝑦, 𝑡) of the lifting line is discretized by element-wise, central, quadratic representations f(y) based on Γ𝑐/4(𝑦, 𝑡), 

at three consecutive collocation points: 𝑦 = 𝑦𝑘−1, 𝑦𝑘 and 𝑦𝑘+1, with Γ𝑐/4(𝑦𝑘 , 𝑡), for k = 1(1)N as unknowns to be 

determined. In the Unsteady Lifting-Line method the N unknown Γ𝑐/4(𝑦𝑘 , 𝑡)’s are solved for. Across the edges of the 

elements, the element-wise quadratic representations f(y) are continuous in function value and in first derivative, 

guaranteeing a continuous, second-order accurate representation of the dipole distribution 𝜇(𝑥, 𝑦, 𝑡) on wing and wake.  
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    Fig. 8 Time-stepping procedure progressed to time 𝒕 = 𝑳𝚫𝒕, L = 5. 

 

 Figure 8 shows that between the lifting line at x = 0 and the TE at 𝑥 = 3𝑐̅/4, the dipole distribution 𝜇(𝑥, 𝑦, 𝑡) =
Γ𝑐/4(𝑦, 𝑡), i.e., 𝜇(𝑥, 𝑦, 𝑡) is constant in x-direction, therefore, the discretization consists of a chord-wise strip 

conveying the circulation of the lifting line (LL) to the trailing edge (TE). The discretization of the wake, situated 

downstream of the TE, is tied to the time-stepping procedure used to obtain the time-dependent solution. For each 

new increment Δ𝑡 in time, the trailing edge of the wake domain is extended by a spanwise strip of width Δ𝑥 = 𝑈∞Δ𝑡. 

Then the dipole distribution on the wake is shifted over this distance in downstream direction, such that at time t: 

𝜇(𝑥, 𝑦, 𝑡) = 𝜇(𝑥 − 𝑈∞Δ𝑡, 𝑦, 𝑡 − Δ𝑡). The number of time steps per period t equals 20, i.e., 
Δ𝑡

𝑇
= Δ𝜏 = 0.05. In the 

present study four full periods of the flapping motion have been simulated, i.e., the calculation comprises 80 time-

steps. 

 

V. Results 

A. Wake Topology 

Figure 9 presents iso-contours of the dipole distribution 𝜇(𝑥, 𝑦, 𝑡 = 4𝑇)/(𝑈∞𝑐̅) on the wing and on the wake of 

the simplified configuration at t/T = 4, i.e., after 4 periods of the flapping/pitching motion, with magnitude in pitching 

motion of 𝜃0 = 0(2.5)20 deg. Results are presented for 3 values of the Strouhal number: a high value St = 0.4, an 

intermediate value St = 0.24 and a low value St = 0.1. This covers the range of Strouhal numbers encountered in bird 

aerodynamics. 

On the wing the instantaneous dipole distribution 𝜇(𝑥, 𝑦, 𝑡 = 4𝑇)/(𝑈∞𝑐̅] is constant in x-direction. On the wake 

the dipole distribution is clearly periodic in space, with dimensionless spatial period U∞/(fb/2), which is proportional 

to 1/St. Also, the dipole distribution is symmetric with respect to the plane y = 0: μ(x,-y,t/T) = μ(x,y,t/T). Consequently, 

the x-component (chordwise) γx= -∂μ/∂y of the vortex distribution is anti-symmetric: ∂μ/∂y(x,-y,t/T)=-∂μ/∂y(x,y,t/T). 

The y-component (spanwise) γy= ∂μ/∂x of the vortex distribution is symmetric with respect to the plane y = 0: ∂μ/∂x(x,-

y,t/T)=∂μ/∂x (x,y,t/T).  

The iso-contours of the dipole distribution provide the topology of the wake. Regions with low values of 𝜇(𝑥, 𝑦, 𝑡) 

are blue-coloured, regions with high values of the dipole distributions are red-coloured. Iso-contours of the dipole 

distribution coincide with vortex lines, see section IV.A and Eq. (14). The closed regions with high (reddish) values 

of the dipole distribution 𝜇, have the gradient of the dipole distribution, ∇⃗⃗ 𝜇, pointing in the direction of the maximum 

value of 𝜇(𝑥, 𝑦, 𝑡). From 𝛾 = 𝑒 𝑧 × ∇⃗⃗ 𝜇 = −
𝜕𝜇

𝜕𝑦
𝑒 𝑥 +

𝜕𝜇

𝜕𝑥
𝑒 𝑦 it then follows that in the iso-plots, the closed reddish regions 

represent regions with closed clockwise running vortex lines, forming a ring-like vortical structure in the plane of the 

wake. The closed bluish regions represent regions with closed anti-clockwise running vortex lines, so is ring-like 

vortical structure in the plane of the wake of opposite sign. 

The regions with high values of 𝜇/(𝑈∞𝑐̅) are produced during the downstroke of the wing. The bluish regions 

with closed, counter-clockwise running vortex lines, are regions with negative values of 𝜇/(𝑈∞𝑐̅), also a ring-like 



15 

 

vortex of opposite direction, which are produced during the downstroke of the wing. Locally, the denser the iso-𝜇 

lines, the larger ∇⃗⃗ 𝜇 and the stronger the vortex distribution.  

From the starboard side of the wing, vortex lines start and subsequently proceed in downstream direction. The 

more outboard starting vortex lines turn around to return to the part of the trailing edge next to the tip. Vortex lines 

starting from the part of the trailing edge closer to the plane of symmetry (root) do not return to the trailing edge. 

These vortex lines continue downstream, meandering around a sequence of regions with closed, alternatingly clock-

wise and counter-clockwise running, vortex lines. 

The sub-plots in Fig. 9, with the spanwise distribution of the effective angle of attack 𝛼𝑒𝑓𝑓  at a number of instants in 

the cycle of the motion, show clearly that the pitching motion reduces the angle of attach induced by the plunging 

motion. The latter is linearly proportional to the spanwise coordinate and zero at the plane of symmetry. This shows 

that for increasing pitch amplitude 𝛼𝑒𝑓𝑓  switches sign, see also Fig. 4.  

  
Fig. 9a Iso-contours of dipole distribution on wing and wake of simplified configuration, for conditions listed 

in Tables 1 and 2, for St = 0.4, 𝜽𝟎 = 0(2.5)20 deg, N = 80, 
𝚫𝒕

𝑻
= 𝟎. 𝟎𝟓. Flow is from left to right. Iso-contour 

values range from 𝝁/(𝑼∞�̅�) ∈ [−𝟎. 𝟕𝟕, 𝟏. 𝟓] in ten equal steps. Column on right shows spanwise distribution 

effective angle-of-attack 𝜶𝒆𝒇𝒇(𝜼, 𝝉) as function of 𝜼 = 𝒚/𝟎. 𝟓𝒃 and 𝝉 =t/T for every 5 deg increment in pitch 

angle amplitude 𝜽𝟎. These sub-figures present the spanwise distribution of 𝜶𝒆𝒇𝒇(𝜼, 𝝉) for half the upstroke (𝝉 ∈

[𝟎, 𝟎. 𝟐𝟓]) followed by half the down stroke 𝝉 ∈ [𝟎. 𝟐𝟓, 𝟎. 𝟓]). Note that at time t, 𝝁 at location x – xTE in wake 

equals 𝚪𝒄/𝟒(𝒚, 𝒕 − (𝒙 − 𝒙𝑻𝑬)/𝑼∞�̅�). The length of the period of the wake equals 𝑼∞/𝒇. 
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Fig. 9b Iso-contours of dipole distribution on wing and wake of simplified configuration, for conditions 

listed in Tables 1 and 2, for St = 0.24, 𝜽𝟎 = 0(2.5)20 deg, N = 80, 
𝚫𝒕

𝑻
= 𝟎. 𝟎𝟓. Iso-contour values range from 

𝝁/(𝑼∞�̅�) ∈ [−𝟎. 𝟕𝟑, 𝟏. 𝟐] in ten equal steps. For description, see Fig. 9a. 

 

With increasing pitch amplitude, the spanwise region with inverted 𝛼𝑒𝑓𝑓  increases, which leads to the formation of a 

wake with 3 vortices rather than two, see Fig 9b. For small Strouhal numbers, the effect of plunging becomes smaller 

and smaller and pitching dominates the formation of the wake. This result in a third type of wake, with just one ring-

like vortex structures stretching along the whole span, of alternating sign in chordwise direction, see Fig. 9c.  

 For St = 0.1, the period of the wake, equal to 
𝑈∞

𝑓
= 2ℎ0/𝑆𝑡, is quite long, as is the wake after 4 cycles of the wing 

motion, therefore, the wake is cut-off at a length of 
𝑥−𝑥𝑇𝐸

0.5𝑏
= 14.5. 

 

Figure 9 also illustrates that the spanwise distribution of the effective angle of attack determines the topology of 

the vortex distribution in the wake. Below a 𝜃0 of 10 to 12.5 deg, the regions with high, similarly the ones with low, 

values of the dipole distribution occur in pairs, one region on the starboard side and one equal-signed region on the 

port-side of the wake. For higher values of the pitch amplitude 𝜃0, for which in the root part of the wing the effective 

angle of attack has the opposite sign of the effective angle of attack for the rest of the wing, the weaker and weaker, 

two equal-signed regions are separated more and more by a region with opposite-signed values of the dipole 

distribution. For pitch amplitude of 𝜃0 = 20 deg, the central region of the wing, with opposite-sign dipole distributions 

are almost as strong as the ones near the wing tips. With increasing pitch amplitude𝜃0 , the vortex wake becomes more 

complex in topology and the ring-like vortex regions become weaker, which results in lower lift and lower thrust.  

With decreasing Strouhal number these effects become more pronounced. 
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Fig. 9c Iso-contours of dipole distribution on wing and wake of simplified configuration, for conditions listed 

in Tables 1 and 2, for St = 0.1, 𝜽𝟎 = 0(2.5)20 deg, N = 80, 
𝚫𝒕

𝑻
= 𝟎. 𝟎𝟓. Iso-contour values range from 𝝁/(𝑼∞�̅�) ∈

[−𝟎. 𝟕𝟑, 𝟏. 𝟐] in ten equal steps. For description, see Fig. 9a. 

 

 

B.  Spanwise Distributions Cycle-Averaged Load and Drag (-Thrust) Coefficients 

For St = 0.3343, Fig. 10 presents 𝑐ℓ(𝑦/(𝑏/2), 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ c(y)/𝑐̅, the spanwise distribution of the cycle-averaged wing 

loading (lift) and of 𝑐𝑑(𝑦/(𝑏/2), 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ c(y)/𝑐̅, the cycle-averaged axial (drag) loading, for the whole range of pitch 

amplitudes 𝜃0 = 0(2.5)20.deg 
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Fig. 10 Left: Spanwise distribution cycle-averaged section wing loading 𝒄𝓵(𝒚/(b/2), 𝒕/𝑻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝒄(𝒚)/�̅�. Right: 

Spanwise distribution cycle-averaged section axial loading 𝒄𝒅(𝒚/(b/2), 𝒕/𝑻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝒄(𝒚)/�̅�. Lifting line method of 

simplified configuration, for conditions listed in Table 1 and Table 2, St = 0.3343, 𝜽𝟎 = 0(2.5)20 deg, N = 80, 
𝚫𝒕

𝑻
= 𝟎. 𝟎𝟓. 

It is noted that the cycle-averaged values 𝑓(𝑡)̅̅ ̅̅ ̅̅  are obtained from the temporal values 𝑓(𝑡) by applying the midpoint 

quadrature rule, for the n-th cycle with 𝐼 sample points: 

  𝑓(𝑡)̅̅ ̅̅ ̅̅ ≡
1

𝑇
∫ 𝑓(𝑡)𝑑𝑡

(𝑛+1)𝑇

𝑛𝑇
≈

1

𝑇
[
1

2
(𝑡2 − 𝑡1)𝑓(𝑡1) + ∑ (𝑡𝑖+1 − 𝑡𝑖)𝑓(𝑡𝑖)

𝐼−1
𝑖=2 +

1

2
(𝑡𝐼 − 𝑡𝐼−1)𝑓(𝑡𝐼)],    (54) 

with 𝑡1 = 𝑛𝑇, 𝑡𝐼 = (𝑛 + 1)𝑇 and ∑ (𝑡𝑖+1 − 𝑡𝑖)
𝐼−1
𝑖=1 = 𝑇. 

 

The cycle-averaged lift (load) distribution 𝑐ℓ(𝑦/(𝑏/2), 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ c(y)/𝑐̅, is highest in the mid-section of the wing, with the 

distribution decreasing smoothly to zero at the wing tips, in a square-root-type of fashion. The spanwise distribution 

of the cycle-averaged wing loading does not depend on the pitch amplitude 𝜃0, only on the Strouhal number. This can 

be deduced from the formulation of the unsteady lifting-line theory, presented in section III. 

Furthermore, the spanwise distribution of the cycle-averaged pitching moment, cycle-averaged circulation 

Γ𝑐/4(𝑦/0.5𝑏), 𝑡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ /𝑈∞𝑐̅ = 0.5𝑐ℓ(𝑦/(𝑏/2), 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ c(y)/𝑐̅, as well as the distribution of the cycle-averaged upwash 

w𝑖𝑛(𝑦/0.5𝑏), 𝑡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/𝑈∞, only depend on Strouhal number St, not on the pitch amplitude 𝜃0. This is illustrated in Fig. 

11, which presents the data for all combinations of St and 𝜃0. Both distributions of cycle-averaged quantities do not 

depend on the pitch amplitude. These results show that the cycle-averaged circulation, and therefore the cycle-

averaged wing loading decrease with increasing Strouhal number St.  

 
Fig. 11 Left: Spanwise distribution cycle-averaged section circulation 𝚪𝒄/𝟒(𝒚/(b/2), 𝒕/𝑻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )/𝑼∞�̅�. Right: Spanwise 

distribution cycle-averaged upwash 𝒘𝒏(𝒚/(b/2), 𝒕/𝑻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/𝑼∞. Lifting line method of simplified configuration, for 

conditions listed in Table 1 and Table 2, St = 0.001 to 0.4, 𝜽𝟎 = 0(2.5)20 deg, N = 80, 
𝚫𝒕

𝑻
= 𝟎. 𝟎𝟓. 
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For the cycle-averaged upwash, independent of the pitch amplitude 𝜃0, it illustrates that the cycle-averaged upwash is 

negative for all Strouhal numbers larger than 0.05.   

 

Fig. 10 shows that the spanwise distribution of the cycle-averaged sectional drag (thrust), involving the product of 

time-dependent circulation and time-dependent upwash, depends on both Strouhal number St and pitch amplitude 𝜃0, 

as can be deduced form Eq. (49). Here, for St = 0.3343, the spanwise distribution of 𝑐𝑑(𝑦/(b/2), 𝑡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑐(𝑦)/𝑐̅ varies 

smoothly with pitch amplitude 𝜃0, at any spanwise location decreasing stepwise with the stepwise pitch amplitude 

increasing from 𝜃0 = 0 deg to 𝜃0 = 20 deg. It appears that, for 𝜃0 < 7.5 deg, the cycle-average thrust is positive along 

the whole lifting line, while for higher pitch amplitudes 𝜃0 an increasing part of the root section is subjected to drag, 

with a value of 0.12 at the root for  𝜃0 = 20 deg. 

 

C. Evolution Overall Lift and Thrust Coefficients 

 For St = 0.3343, Fig. 12 presents the time-dependent lift coefficient CL(t) and the time-dependent drag (negative 

of thrust) coefficient CD(t) of the wing, i.e., the value obtained by integrating the results presented in Fig. 10 with 

respect to space along the span of the wing. Given the values at the midpoints of the discretisation of the lifting line, 

the midpoint quadrature rule has been used to obtain the integrated values. Results are shown for the whole range of 

pitch amplitudes: 𝜃0 = 0(2.5)20. 

 

Fig. 12 Upper: Temporal lift coefficient 𝑪𝑳(𝒕/𝑻). Lower: Temporal drag coefficient 𝑪𝑫(𝒕/𝑻). Lifting line 

method of simplified configuration, for conditions listed in Table 1 and Table 2, St = 0.3343, 𝜽𝟎 = 0(2.5)20 deg, 

N = 80, 
𝚫𝒕

𝑻
= 𝟎. 𝟎𝟓. 

 

Both the lift and the drag coefficients become harmonic after the first cycle of the flapping motion. For the lower 

values of the pitch amplitude 𝜃0, the amplitude of the lift coefficient is largest, with an amplitude of 2.0 for 𝜃0 = 0, 

which decreases with increasing 𝜃0. For 𝜃0 = 10 deg this amplitude of the temporal variation of the lift coefficient 

has decreased to 1.0. For still higher pitch amplitudes, peaks in the temporal distribution flatten out and the variation 

with time decreases to an amplitude of 0.2. At the highest pitch amplitudes of 𝜃0 > 15 deg, the lift coefficient is 

positive during the whole cycle. Note that, though the amplitude of CL(t/T) very much depends on the pitch amplitude 

𝜃0, like the spanwise distribution of the cycle-averaged wing load. The cycle-averaged value 𝐶𝐿
̅̅ ̅ of the time-dependent 

overall lift coefficient CL(t ) does not vary with pitch amplitude 𝜃0. 
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The evolution of the drag coefficient is also harmonic, but in a form somewhat more complex than the lift 

coefficient. This can be understood by realising that the drag is proportional to the product of the distribution of the 

circulation of the lifting line and the upwash distribution, induced at the lifting line, by the wake dipole distribution. 

The latter depends linearly on the circulation distribution of the lifting line at the same moment in time and at all 

earlier moments in time. That yields a first harmonic at double the frequency of the frequency of the flapping/pitching 

motion [21]. 

The maximum value of the harmonic drag/thrust coefficient decreases with increasing pitch amplitude: the peak 

amplitude of the thrust coefficient (-CD(t/T)) equals about 0.7 in absolute value at 𝜃0 = 0, which decreases to 0.35 at 

𝜃0 = 20 deg  

 

D. Time-Averaged Overall Lift and Thrust coefficients, dependence on 𝜽𝟎 and St 

 Figure 13 presents the cycle-averaged lift coefficient 𝐶𝐿
̅̅ ̅ = 𝐶𝐿(𝑡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and the cycle-averaged thrust coefficient 

𝐶𝑇
̅̅ ̅ = −𝐶𝐷(𝑡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ as function of the Strouhal number St, for pitch amplitude 𝜃0 = 0(2.5)20 deg. The Strouhal numbers 

considered were St = {10-3,10-2,0.025,0.05,0.1,0.15,0.19,0.24,0.3,0.3343,0.4}. Figure 13 shows that the unsteady-

lifting-line method predicts a mean lift coefficient that, like the cycle-averaged load distribution, does not depend on 

the pitch amplitude. For small values of St the lift coefficient asymptotes to 𝐶𝐿
̅̅ ̅ = 0.5507, the drag coefficient to 𝐶𝐷

̅̅̅̅  = 

-0.0003. For steady flow, lifting-line theory provides the lift coefficient for an AR = 7.3358 wing with 𝛼0 = −5 deg, 

at zero angle of attack, from [26]: 

  𝐶𝐿 =
𝑎0

1+
𝑎0

𝜋𝑒𝐴𝑅

(𝛼 − 𝛼0),  

with 𝑎0 = 2𝜋 the sectional lift slope and e the span efficiency. For e = 1, it follows that 𝐶𝐿 = 0.5483, a value close to 

𝐶𝐿
̅̅ ̅ = 0.5507 determined in Fig. 13 for St → 0. For the induced drag coefficient 𝐶𝐷,𝑖𝑛, the lifting-line theory provides 

[26]: 

  𝐶𝐷,𝑖𝑛 =
𝐶𝐿

2

𝜋𝑒𝐴𝑅
. 

So, for the present wing it follows 𝐶𝐷,𝑖𝑛 = 0.0131. Figure 13 gives for St = 10-3 a value of 𝐶𝐷
̅̅̅̅  between -0.00014 

and – 0.0014, i.e., a small thrust rather than a drag.  

 

The overall lift coefficient 𝐶𝐿
̅̅ ̅ decreases with increasing Strouhal number, which is due to the shorter wave length 

of the time-dependent dipole (vortex) distribution on the wake, which equals 
𝑈∞

𝑓
=

2ℎ0

𝑆𝑡
. The upwash 𝑤𝑖𝑛  induced by 

the wake at the lifting line decreases with decreasing St. 

 

Fig. 13 Left: Mean lift coefficient 𝑪𝑳 = 𝑪𝑳(𝒕/𝑻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ vs Strouhal number St, for pitch amplitude 𝜽𝟎 = 𝟎(𝟐. 𝟓)𝟐𝟎 

deg. Right: Mean thrust coefficient 𝑪𝑻 = −𝑪𝑫(𝒕/𝑻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  vs Strouhal number St, for pitch amplitude 𝜽𝟎 = 𝟎(𝟐. 𝟓)𝟐𝟎 

deg. St = {10-3,10-2,0.025,0.05,0.1,0.15,0.19,0.24,0.3,0.3343,0.4}. Lifting line method of simplified configuration, 

for conditions listed in Tables 1 and Table 2, 𝜽𝟎 = 0(2.5)20 deg, N = 80, 
𝚫𝒕

𝑻
= 𝟎. 𝟎𝟓. 

 

Finally, included in Fig. 13 is the overall, cycle-averaged, thrust coefficient 𝐶𝑇
̅̅ ̅ as function of Strouhal number St, 

for the full range of pitch amplitudes 𝜃0. The results show that the cycle-averaged (mean) span-integrated thrust 

coefficient is positive for higher Strouhal numbers and lower pitch amplitudes𝜃0. There is also a range of 

combinations (St, 𝜃0) for which the overall thrust turns into drag: the lower St, the lower the pitch amplitude should 

be in order to retain thrust. 
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E.  Time-Averaged Required Power Coefficient and Propulsion Efficiency 

The curves CT (St; 𝜃0), for constant pitching amplitude 𝜃0,in the range 𝜃0 ∈ [0,20]deg, pass through CT (St = 0) = 0 

and through CT (St = St1; 𝜃0) = 0. 

The trendline function of Excel gives an excellent cubic-polynomial-fit  

  𝐶𝑇(St; 𝜃0) = 𝑎0(𝜃0) + 𝑎1(𝜃0)St + 𝑎2(𝜃0)St
2 + 𝑎3(𝜃0)St

3, for St ∈ [0,0.4], 
with consistently a small value of 𝑎0, consistent with the curves passing through the origin, so we chose: 

  𝐶𝑇(St; 𝜃0) = St[𝑎1(𝜃0) + 𝑎2(𝜃0)St + 𝑎3(𝜃0)St
2], 

with 𝑎𝑖(𝜃0), i = 1,2,3 values found from the Excel trendlines for each 𝜃0 considered. 

Then, it the cubic curve intersecting the St-axis at some 𝜃0-dependent location St = St1, which is calculated from 

  St1,2(𝜃0) =
−𝑎2±√𝑎2

2−4𝑎1𝑎3

2𝑎3
  

The -sign gives the value of St1 in the required range of the curves, i.e., St ∈ [0,0.4], for the pitching amplitude in 

the range 𝜃0 ∈ [0,20]deg, in steps of 2.5 deg. Using Excel, adequate low-order polynomial fits are found for both 

St1(𝜃0) and St2(𝜃0). Thus, the polynomial fit for the thrust coefficient CT is expressed, with 𝐴𝑇(𝜃0) = 𝑎3(𝜃0), 

St𝑇,1(𝜃0) = St1(𝜃0) and St𝑇,2(𝜃0) = St2(𝜃0) as 

  𝐶𝑇(St; 𝜃0) = 𝐴𝑇(𝜃0)St[St − St𝑇,1(𝜃0)][St − St𝑇,2(𝜃0)],  

for St ∈ [0,0.4] and 𝜃0 ∈ [0,20]deg, with 

  𝐴𝑇(𝜃0) = −5.1788 − 0.1489𝜃0 − 0.0035𝜃0
2,  

  St𝑇,1(𝜃0) = −0.0103 + 0.0013𝜃0 and 

  St𝑇,2(𝜃0) = 0.876 − 0.0091𝜃0. 

 

The required power coefficient CP turns out to be a cubic-polynomial function of the Strouhal number as well. A 

similar procedure as derived for the thrust coefficient results for the required power coefficient in: 

  𝐶𝑃(St;𝜃0) = 𝐴𝑃(𝜃0)St[St − St𝑃,1(𝜃0)][St − St𝑃,2(𝜃0)],  

for St ∈ [0,0.4] and 𝜃0 ∈ [0,20]deg, with 

  𝐴𝑃(𝜃0) = −3.1487 − 0.0654𝜃0 − 0.0004𝜃0
2,  

  St𝑃,1(𝜃0) = −0.0066 + 0.0011𝜃0 and 

  St𝑃,2(𝜃0) = 1.8592 − 0.0034𝜃0 + 0.0003𝜃0
2. 

 

The propulsive efficiency 𝜂(St; 𝜃0) is defined as 

  𝜂(St; 𝜃0) ≡
𝐶𝑇(St;𝜃0)

𝐶𝑃(St;𝜃0)
=

𝐴𝑇(𝜃0)[St−St𝑇,1(𝜃0)][St−St𝑇,2(𝜃0)]

𝐴𝑃(𝜃0)[St−St𝑃,1(𝜃0)][St−St𝑃,2(𝜃0)],
.  

In the ranges considered both [St − St𝑇,2(𝜃0)] and [St − St𝑃,2(𝜃0)] are nonzero, so that it follows that the 

efficiency equals zero at St = St𝑇,1(𝜃0) and has an asymptote at St = St𝑝,1(𝜃0) < St𝑇,1(𝜃0). 

 
Fig. 14 Left: Mean required power coefficient 𝑪𝑷,𝒑+𝒇 = 𝑪𝑷,𝒑+𝒇(𝒕/𝑻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  vs Strouhal number St, for pitch 

amplitude 𝜽𝟎 = 𝟎(𝟐. 𝟓)𝟐𝟎 deg. Right: Propulsive efficiency 𝜼(𝑺𝒕; 𝜽𝟎) vs Strouhal number St, for pitch 

amplitude 𝜽𝟎 = 𝟎(𝟐. 𝟓)𝟐𝟎 deg. St = {10-3,10-2,0.025,0.05,0.1,0.15,0.19,0.24,0.3,0.3343,0.4}. Lifting line method 

of simplified configuration, for conditions listed in Tables 1 and Table 2, 𝜽𝟎 = 0(2.5)20 deg, N = 80, 
𝚫𝒕

𝑻
= 𝟎. 𝟎𝟓. 
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 Figure 14 shows that the cycle-averaged overall required power coefficient 𝐶𝑃,𝑝+𝑓behaves very similarly as the 

thrust coefficient. In most of the CT-St plane the power coefficient is positive, only for small values of the Strouhal 

number and nonzero pitch amplitude, the power coefficient is negative. The resulting propulsion efficiency is highest 

for lowest pitch amplitude. The propulsion efficiency decreases with increasing Strouhal number. 

 

VI. Conclusions 

 Prandtl’s lifting-line, approximate, theory for the incompressible, inviscid, irrotational, steady flow about thin, 

mildly-cambered, high-aspect-ratio wings has been extended for application to flapping wings. In the extended theory 

the circulation of the wing, i.e., of the lifting line, is time-dependent. The theory is formulated in terms of a time-

dependent dipole distribution μ(x,y,t) on a planar, stationary wake reference surface. The planar surface, z = 0, consists 

of the wing, with attached to its trailing edge, a semi-infinite wake surface also in the plane z = 0. 

On the wing the dipole distribution is approximated by a spanwise distribution Γ𝑐/4(𝑦, 𝑡) along the ¼-chord line, 

continued to the trailing edge by a chordwise-constant distribution μ(x,y,t) = Γ𝑐/4(𝑦, 𝑡). Therefore, the trailing edge 

carries a dipole distribution identical to the dipole distribution along the lifting line at the 1/4-chord line. This 

formulation is identical to Prandtl’s lifting line formulation, with the lifting-line along the 1/4-chord line, however, 

with the difference that in Prandtl’s theory for steady flow, the chord-wise-constant dipole distribution is continued to 

infinity downstream. The dipole distribution on the wake surface is the continuation of the dipole distribution on the 

wing. In the case of unsteady flow, at time t, the wake dipole distribution is determined in terms of Γ𝑐/4(𝑦, 𝑡∗) generated 

at the trailing edge at earlier times, which subsequently is convected onto the wake surface. The unsteady-lifting-line 

method includes the newly derived Kutta-Joukowski Theorem for unsteady flow and the Kutta trailing-edge condition 

for unsteady flow. 

The resulting unsteady lifting-line method has been applied to a flapping wing like the Robird wing. The method 

predicts: (i) the topology of the vortical wake of the flapping wing; (ii) the spanwise distributions of transient (and 

cycle-averaged) sectional lift (wing load) and sectional axial force (thrust), as well as sectional pitching moment; (iii) 

the spanwise distributions of transient (and cycle-averaged) sectional required power; (iv) the transient (and cycle-

averaged) overall lift, overall thrust and require power, for a number of pitching amplitudes and a number of Strouhal 

numbers  

These numerical results provide insight in the trends in topology of the vortical wake, lift and thrust experienced 

by the flapping wing due to variation in pitch amplitude and Strouhal number. It has been demonstrated that the 

spanwise distribution of cycle-averaged sectional circulation, sectional lift (load) and upwash, as well as cycle-

averaged overall lift, depend on Strouhal number St, but do not depend on pitch amplitude 𝜃0, while the spanwise 

distribution of cycle-averaged sectional thrust and of cycle-averaged overall thrust depend on both Strouhal number 

and pitch amplitude 𝜃0. The computational method also predicts the  required power and of propulsive efficiency of 

flapping flight. 
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