37,924 research outputs found

    Hadronic three-body decays of light vector mesons

    Full text link
    The decays of light vector mesons into three pseudoscalar mesons are calculated to leading order in the recently proposed counting scheme that is based on the hadrogenesis conjecture. Fully differential as well as integrated decay widths are presented. Since the required parameters have been fixed by other processes, the considered three-body decays are predictions of the presented approach. The decay width of the omega meson into three pions agrees very well with experiment. The partial decay widths of the K^* into its three K-pi-pi channels are predicted.Comment: 7 page

    On the consistency of recent QCD lattice data of the baryon ground-state masses

    Full text link
    In our recent analysis of lattice data of the BMW, LHPC and PACS-CS groups we determined a parameter set of the chiral Lagrangian that allows a simultaneous description of the baryon octet and decuplet masses as measured by those lattice groups. The results on the baryon spectrum of the HSC group were recovered accurately without their inclusion into our 6 parameter fit. We show that the same parameter set provides an accurate reproduction of the recent results of the QCDSF-UKQCD group probing the baryon masses at quite different quark masses. This shows a remarkable consistency amongst the different lattice simulations. With even more accurate lattice data in the near future it will become feasible to determine all low-energy parameters relevant at N3^3LO.Comment: 7 pages, 2 figure

    Large-N_c operator analysis of 2-body meson-baryon counterterms in the chiral Lagrangian

    Full text link
    The chiral SU(3) Lagrangian with the baryon octet and decuplet fields is considered. The Q^2 counterterms involving the decuplet fields are constructed. We derive the correlation of the chiral parameters implied by the 1/N_c expansion at leading order in QCD.Comment: 20 pages, 3 figure

    Strangeness in the baryon ground states

    Full text link
    We compute the strangeness content of the baryon octet and decuplet states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-NcN_c sum rule estimates of the counter terms relevant for the baryon masses at N3^3LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. From a global fit we determine the axial coupling constants F0.45F\simeq 0.45 and D0.80D \simeq 0.80 in agreement with their values extracted from semi-leptonic decays of the baryons. Moreover, various flavor symmetric limits of baron octet and decuplet masses as obtained by the QCDSF-UKQCD group are recovered. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.Comment: 15 pages, 5 tables, 3 figures. There are two significant extensions in the revised manuscript. First, a precise determination of the axial coupling constants F and D from the lattice data on the baryon masses is provided. Second, it is shown that the lattice data of the QCDSF-UKQCD group on the baryon masses in the flavor symmetric limit are recovered. The 3rd version is the published versio

    Unitary and causal dynamics based on the chiral Lagrangian

    Full text link
    Pion-nucleon scattering, pion photoproduction, and nucleon Compton scattering are analyzed within a scheme based on the chiral Lagrangian. Partial-wave amplitudes are obtained by an analytic extrapolation of subthreshold reaction amplitudes computed in chiral perturbation theory, where the constraints set by electromagnetic-gauge invariance, causality and unitarity are used to stabilize the extrapolation. Experimental data are reproduced up to energies s1300\sqrt{s}\simeq 1300 MeV in terms of the parameters relevant at order Q3Q^3. A striking puzzle caused by an old photon asymmetry measurement close to the pion production threshold is discussed.Comment: Invited plenary talk at Chiral 10 Workshop, Valencia (Spain), June 21-24, 201

    Kaon and antikaon properties in cold nuclear medium

    Full text link
    We present results of a self-consistent calculation for the kaon and antikaon spectral functions in cold nuclear matter, using as input the kaon-nucleon and antikaon-nucleon scattering amplitudes of the vacuum. We investigate the effect of in-medium pion dressing on the antikaon-nucleon scattering amplitudes and antikaon spectral function. We find the influence of pion dressing to be minor on the antikaon spectral function and limited on the hyperon resonances causing only a small additional broadening. An exception is the \Sigma(1690). At nuclear saturation density an attractive mass shift of about 20 MeV and width of about 130 MeV is obtained. The kaon shows a repulsive mass increase of 36 MeV and a small width of the quasiparticle peak at saturation density.Comment: 8 pages, 4 figures, submitted to Heavy Ion Physic
    corecore