19,428 research outputs found

    Dimension Spectra of Lines

    Full text link
    This paper investigates the algorithmic dimension spectra of lines in the Euclidean plane. Given any line L with slope a and vertical intercept b, the dimension spectrum sp(L) is the set of all effective Hausdorff dimensions of individual points on L. We draw on Kolmogorov complexity and geometrical arguments to show that if the effective Hausdorff dimension dim(a, b) is equal to the effective packing dimension Dim(a, b), then sp(L) contains a unit interval. We also show that, if the dimension dim(a, b) is at least one, then sp(L) is infinite. Together with previous work, this implies that the dimension spectrum of any line is infinite

    The Initial Mass Functions in the Super-Star-Clusters NGC 1569A and NGC 1705-1

    Get PDF
    I use recent photometric and stellar velocity dispersion measurements of the super-star-clusters (SSCs) NGC 1569A and NGC 1705-1 to determine their present-day luminosity/mass (L_V/M) ratios. I then use the inferred L_V/M ratios, together with population synthesis models of evolving star-clusters, to constrain the initial-mass-functions (IMFs) in these objects. I find that (L_V/M)_solar=28.9 in 1569A, and (L_V/M)_solar=126 in 1705-1. It follows that in 1569A the IMF is steep with alpha~2.5 for m**(-alpha)dm IMFs which extend to 0.1 M_sun. This implies that most of the stellar mass in 1569A is contained in low-mass (< 1 M_sun) stars. However, in 1705-1 the IMF is either flat, with alpha<2$, or it is truncated at a lower mass-limit between 1 and 3 M_sun. I compare the inferred IMFs with the mass functions (MFs) of Galactic globular clusters. It appears that 1569A has a sufficient reservoir of low-mass stars for it to plausibly evolve into an object similar to Galactic globular clusters. However, the apparent deficiency of low-mass stars in 1705-1 may make it difficult for this SSC to become a globular cluster. If low-mass stars do dominate the cluster mass in 1705-1, the large L_V/M ratio in this SSC may be evidence that the most massive stars have formed close to the cluster cores.Comment: ApJ, in press. 19 Pages, Latex; [email protected]

    Using network analysis for the prediction of treatment dropout in patients with mood and anxiety disorders: a methodological proof-of-concept study

    Get PDF
    There are large health, societal, and economic costs associated with attrition from psychological services. The recently emerged, innovative statistical tool of complex network analysis was used in the present proof-of-concept study to improve the prediction of attrition. Fifty-eight patients undergoing psychological treatment for mood or anxiety disorders were assessed using Ecological Momentary Assessments four times a day for two weeks before treatment (3,248 measurements). Multilevel vector autoregressive models were employed to compute dynamic symptom networks. Intake variables and network parameters (centrality measures) were used as predictors for dropout using machine-learning algorithms. Networks for patients differed significantly between completers and dropouts. Among intake variables, initial impairment and sex predicted dropout explaining 6% of the variance. The network analysis identified four additional predictors: Expected force of being excited, outstrength of experiencing social support, betweenness of feeling nervous, and instrength of being active. The final model with the two intake and four network variables explained 32% of variance in dropout and identified 47 out of 58 patients correctly. The findings indicate that patients’ dynamic network structures may improve the prediction of dropout. When implemented in routine care, such prediction models could identify patients at risk for attrition and inform personalized treatment recommendations.This work was supported by the German Research Foundation National Institute (DFG, Grant nos. LU 660/8-1 and LU 660/10-1 to W. Lutz). The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the manuscript. The corresponding author had access to all data in the study and had final responsibility for the decision to submit for publication. Dr. Hofmann receives financial support from the Alexander von Humboldt Foundation (as part of the Humboldt Prize), NIH/NCCIH (R01AT007257), NIH/NIMH (R01MH099021, U01MH108168), and the James S. McDonnell Foundation 21st Century Science Initiative in Understanding Human Cognition - Special Initiative. (LU 660/8-1 - German Research Foundation National Institute (DFG); LU 660/10-1 - German Research Foundation National Institute (DFG); Alexander von Humboldt Foundation; R01AT007257 - NIH/NCCIH; R01MH099021 - NIH/NIMH; U01MH108168 - NIH/NIMH; James S. McDonnell Foundation 21st Century Science Initiative in Understanding Human Cognition - Special Initiative)Accepted manuscrip

    Spontaneous spiking in an autaptic Hodgkin-Huxley set up

    Full text link
    The effect of intrinsic channel noise is investigated for the dynamic response of a neuronal cell with a delayed feedback loop. The loop is based on the so-called autapse phenomenon in which dendrites establish not only connections to neighboring cells but as well to its own axon. The biophysical modeling is achieved in terms of a stochastic Hodgkin-Huxley model containing such a built in delayed feedback. The fluctuations stem from intrinsic channel noise, being caused by the stochastic nature of the gating dynamics of ion channels. The influence of the delayed stimulus is systematically analyzed with respect to the coupling parameter and the delay time in terms of the interspike interval histograms and the average interspike interval. The delayed feedback manifests itself in the occurrence of bursting and a rich multimodal interspike interval distribution, exhibiting a delay-induced reduction of the spontaneous spiking activity at characteristic frequencies. Moreover, a specific frequency-locking mechanism is detected for the mean interspike interval.Comment: 8 pages, 10 figure

    Electromagnetic transitions in an effective chiral Lagrangian with the eta-prime and light vector mesons

    Full text link
    We consider the chiral Lagrangian with a nonet of Goldstone bosons and a nonet of light vector mesons. The mixing between the pseudoscalar mesons eta and eta-prime is taken into account. A novel counting scheme is suggested that is based on hadrogenesis, which conjectures a mass gap in the meson spectrum of QCD in the limit of a large number of colors. Such a mass gap would justify to consider the vector mesons and the eta-prime meson as light degrees of freedom. The complete leading order Lagrangian is constructed and discussed. As a first application it is tested against electromagnetic transitions of light vector mesons to pseudoscalar mesons. Our parameters are determined by the experimental data on photon decays of the omega, phi and eta-prime meson. In terms of such parameters we predict the corresponding decays into virtual photons with either dielectrons or dimuons in the final state.Comment: 17 pages, extended discussion on mixin

    Is Heavy Baryon Approach Necessary?

    Get PDF
    It is demonstrated that using an appropriately chosen renormalization condition one can respect power counting within the relativistic baryon chiral perturbation theory without appealing to the technique of the heavy baryon approach. Explicit calculations are performed for diagrams including two-loops. It is argued that the introduction of the heavy baryon chiral perturbation theory was useful but not necessary.Comment: 9 pages, 2 figures, minor changes, references adde

    Anomalous spatial diffusion and multifractality in optical lattices

    Get PDF
    Transport of cold atoms in shallow optical lattices is characterized by slow, nonstationary momentum relaxation. We here develop a projector operator method able to derive in this case a generalized Smoluchowski equation for the position variable. We show that this explicitly non-Markovian equation can be written as a systematic expansion involving higher-order derivatives. We use the latter to compute arbitrary moments of the spatial distribution and analyze their multifractal properties.Comment: 5 pages, 3 figure

    CHEMICALLY MODIFIED PHOTOSYNTHETIC BACTERIAL REACTION CENTERS: CIRCULAR DICHROISM, RAMAN RESONANCE, LOW TEMPERATURE ABSORPTION, FLUORESCENCE AND ODMR SPECTRA AND POLYPEPTIDE COMPOSITION OF BOROHYDRIDE TREATED REACTION CENTERS FROM Rhodobacter sphaeroides R26

    Get PDF
    Reaction centers from Rhodobacter sphaeroides have been modified by treatment with sodium borohydride similar to the original procedure [Ditson et al., Biochim. Biophys. Acta 766, 623 (1984)], and investigated spectroscopically and by gel electrophoresis. (1) Low temperature (1.2 K) absorption, fluorescence, absorption- and fluorescence-detected ODMR, and microwave-induced singlet-triplet absorption difference spectra (MIA) suggest that the treatment produces a spectroscopically homogeneous preparation with one of the ‘additional’ bacteriochlorophylls being removed. The modification does not alter the zero field splitting parameters of the primary donor triplet (TP870). (2) From the circular dichroism and Raman resonance spectra in the1500–1800 cm-1 region, the removed pigment is assigned to BchlM, e.g. the "extra" Bchl on the "inactive" M-branch. (3) A strong coupling among all pigment molecules is deduced from the circular dichroism spectra, because pronounced band-shifts and/or intensity changes occur in the spectral components assigned to all pigments. This is supported by distinct differences among the MIA spectra of untreated and modified reaction centers, as well as by Raman resonance. (4) The modification is accompanied by partial proteolytic cleavage of the M-subunit. The preparation is thus spectroscopically homogeneous, but biochemically heterogenous

    The Infrared Extinction Law at Extreme Depth in a Dark Cloud Core

    Full text link
    We combined sensitive near-infrared data obtained with ground-based imagers on the ESO NTT and VLT telescopes with space mid-infrared data acquired with the IRAC imager on the Spitzer Space Telescope to calculate the extinction law A_\lambda/A_K as a function of \lambda between 1.25 and 7.76 micron to an unprecedented depth in Barnard 59, a star forming, dense core located in the Pipe Nebula. The ratios A_\lambda/A_K were calculated from the slopes of the distributions of sources in color-color diagrams \lambda-K vs. H-K. The distributions in the color-color diagrams are fit well with single slopes to extinction levels of A_K ~ 7 (A_V ~ 59 mag). Consequently, there appears to be no significant variation of the extinction law with depth through the B59 line of sight. However, when slopes are translated into the relative extinction coefficients A_\lambda/A_K, we find an extinction law which departs from the simple extrapolation of the near-infrared power law extinction curve, and agrees more closely with a dust extinction model for a cloud with a total to selective absorption R_V=5.5 and a grain size distribution favoring larger grains than those in the diffuse ISM. Thus, the difference we observe could be possibly due to the effect of grain growth in denser regions. Finally, the slopes in our diagrams are somewhat less steep than those from the study of Indebetouw et al. (2005) for clouds with lower column densities, and this indicates that the extinction law between 3 and 8 micron might vary slightly as a function of environment.Comment: 22 pages manuscript, 4 figures (2 multipart), 1 tabl
    • 

    corecore