16,687 research outputs found
Hadronic three-body decays of light vector mesons
The decays of light vector mesons into three pseudoscalar mesons are
calculated to leading order in the recently proposed counting scheme that is
based on the hadrogenesis conjecture. Fully differential as well as integrated
decay widths are presented. Since the required parameters have been fixed by
other processes, the considered three-body decays are predictions of the
presented approach. The decay width of the omega meson into three pions agrees
very well with experiment. The partial decay widths of the K^* into its three
K-pi-pi channels are predicted.Comment: 7 page
Strange Particles and Neutron Stars - Experiments at Gsi
Experiments on strangeness production in nucleus-nucleus collisions at SIS
energies address fundamental aspects of modern nuclear physics: the
determination of the nuclear equation-of-state at high baryon densities and the
properties of hadrons in dense nuclear matter. Experimental data and
theoretical results will be reviewed. Future experiments at the FAIR
accelerator aim at the exploration of the QCD phase diagram at highest baryon
densities.Comment: %Invited talk given at the International Invited talk given at the
International Symposium on Heavy Ion Physics (ISHIP 2006) April 3-6 2006,
FIAS, Frankfurt, Germany Frankfurt, German
Aliquoting structure for centrifugal microfluidics based on a new pneumatic valve
We present a new microvalve that can be monolithically integrated in centrifugally driven lab-on-a-chip systems. In contrast to existing operation principles that use hydrophobic patches, geometrically defined capillary stops or siphons, here we present a pneumatic principle. It needs neither additional local coatings nor expensive micro sized geometries. The valve is controlled by the spinning frequency and can be switched to be open when the centrifugal pressure overcomes the pneumatic pressure inside an unvented reaction cavity. We designed and characterized valves ranging in centrifugal burst pressure from 6700 Pa to 2100 Pa. Based on this valving principle we present a new structure for aliquoting of liquids. We experimentally demonstrated this by splitting 105 muL volumes into 16 aliquots with a volume CV of 3 %
Chiral Partners and their Electromagnetic Radiation -- Ingredients for a systematic in-medium calculation
It is argued that the chiral partners of the lowest-lying hadrons are
hadronic molecules and not three-quark or quark-antiquark states, respectively.
As an example the case of a_1 as the chiral partner of the rho is discussed.
Deconfinement -- or as a precursor large in-medium widths for hadronic states
-- is proposed as a natural way to accommodate for the fact that at chiral
restoration the respective in-medium spectra of chiral partners must become
degenerate. Ingredients for a systematic and self-consistent in-medium
calculation are presented with special emphasis on vector-meson dominance which
emerges from a recently proposed systematic counting scheme for the mesonic
sector including pseudoscalar and vector mesons as active degrees of freedom.Comment: revised version: more references adde
From LTL and Limit-Deterministic B\"uchi Automata to Deterministic Parity Automata
Controller synthesis for general linear temporal logic (LTL) objectives is a
challenging task. The standard approach involves translating the LTL objective
into a deterministic parity automaton (DPA) by means of the Safra-Piterman
construction. One of the challenges is the size of the DPA, which often grows
very fast in practice, and can reach double exponential size in the length of
the LTL formula. In this paper we describe a single exponential translation
from limit-deterministic B\"uchi automata (LDBA) to DPA, and show that it can
be concatenated with a recent efficient translation from LTL to LDBA to yield a
double exponential, \enquote{Safraless} LTL-to-DPA construction. We also report
on an implementation, a comparison with the SPOT library, and performance on
several sets of formulas, including instances from the 2016 SyntComp
competition
The PEP Survey: Infrared Properties of Radio-Selected AGN
By exploiting the VLA-COSMOS and the Herschel-PEP surveys, we investigate the
Far Infrared (FIR) properties of radio-selected AGN. To this purpose, from
VLA-COSMOS we considered the 1537, F[1.4 GHz]>0.06 mJy sources with a reliable
redshift estimate, and sub-divided them into star-forming galaxies and AGN
solely on the basis of their radio luminosity. The AGN sample is complete with
respect to radio selection at all z<~3.5. 832 radio sources have a counterpart
in the PEP catalogue. 175 are AGN. Their redshift distribution closely
resembles that of the total radio-selected AGN population, and exhibits two
marked peaks at z~0.9 and z~2.5. We find that the probability for a
radio-selected AGN to be detected at FIR wavelengths is both a function of
radio power and redshift, whereby powerful sources are more likely to be FIR
emitters at earlier epochs. This is due to two distinct effects: 1) at all
radio luminosities, FIR activity monotonically increases with look-back time
and 2) radio activity of AGN origin is increasingly less effective at
inhibiting FIR emission. Radio-selected AGN with FIR emission are
preferentially located in galaxies which are smaller than those hosting
FIR-inactive sources. Furthermore, at all z<~2, there seems to be a
preferential (stellar) mass scale M ~[10^{10}-10^{11}] Msun which maximizes the
chances for FIR emission. We find such FIR (and MIR) emission to be due to
processes indistinguishable from those which power star-forming galaxies. It
follows that radio emission in at least 35% of the entire AGN population is the
sum of two contributions: AGN accretion and star-forming processes within the
host galaxy.Comment: 13 pages, 14 figures, to appear in MNRA
- âŠ