136 research outputs found

    Nanoparticle tethered antioxidant response element as a biosensor for oxygen induced toxicity in retinal endothelial cells

    Get PDF
    Purpose: A novel system, based on biosensor DNA tethered to a nanoparticle, was developed for the treatment of retinopathy of prematurity. Methods: The construction of a five-layered nanoparticle was visualized with gel electrophoresis. Transcriptionally active PCR products (TAP) containing the biosensor sequence, were bioconjugated to the surface of magnetic nanoparticles yielding biosensor tethered magnetic nanoparticles (MNP). The biosensor was based on an enhanced green fluorescent protein (EGFP) reporter gene driven by an enhanced antioxidant response element ( ARE). Image analysis and flow cytometry were used to characterize MNP delivery and biosensor activity. Results: The MNP penetrated dividing and migrating cells more often than quiescent endothelial cells in a wound-healing in vitro assay. Prussian blue staining demonstrated that more cells have nanoparticle cores than are transfected. When compared to naked TAP alone, MNP transfected more cells in a dose dependent manner. Both the biosensor alone and MNP induce gene expression in the presence of hyperoxia, greater than 1.5 fold over normoxic controls. These data also show that the MNP had a signal to noise ratio of 0.5 greater than the plasmid form of the biosensor as demonstrated by flow cytometry. Conclusions: This approach has the potential to allow the endothelial cells of the retinal vasculature to prevent or treat themselves after hyperoxic insult, rather than systemic treatment to protect or treat only the retina

    Construction, gene delivery, and expression of DNA tethered nanoparticles

    Get PDF
    PURPOSE: Layered nanoparticles have the potential to deliver any number of substances to cells both in vitro and in vivo. The purpose of this study was to develop and test a relatively simple alternative to custom synthesized nanoparticles for use in multiple biological systems, with special focus on the eye. METHODS: The biotin-labeled transcriptionally active PCR products (TAP) were conjugated to gold, semiconductor nanocrystals, and magnetic nanoparticles (MNP) coated with streptavidin. The process of nanoparticle construction was monitored with gel electrophoresis. Fluorescence microscopy followed by image analysis was used to examine gene expression levels from DNA alone and tethered MNP in human hepatoma derived Huh-7 cells. Adult retinal endothelial cells from both dog (ADREC) and human (HREC) sources were transfected with nanoparticles and reporter gene expression evaluated with confocal and fluorescent microscopy. Transmission electron microscopy was used to quantify the concentration of nanoparticles in a stock solution. Nanoparticles were evaluated for transfection efficiency, determined by fluorescence microscopy cell counts. Cells treated with MNP were evaluated for increased reactive oxygen species (ROS) and necrosis with flow cytometry. RESULTS: Both 5' and 3' biotin-labeled TAP bound equally to MNP and there were no differences in functionality between the two tethering orientations. Free DNA was easily removed by the use of magnetic columns. These particles were also able to deliver genes to a human hepatoma cell line, Huh-7, but transfection efficiency was greater than TAP. The semiconductor nanocrystals and MNP had the highest transfection efficiencies. The MNP did not induce ROS formation or necrosis after 48 h of incubation. CONCLUSIONS: Once transfected, the MNP had reporter gene expression levels equivalent to TAP. The nanoparticles, however, had better transfection efficiencies than TAP. The magnetic nanoparticles were the most easily purified of all the nanoparticles tested. This strategy for bioconjugating TAP to nanoparticles is valuable because nanoparticle composition can be changed and the system optimized quickly. Since endothelial cells take up MNP, this strategy could be used to target neovascularization as occurs in proliferative retinopathies. Multiple cell types were used to test this technology and in each the nanoparticles were capable of transfection. In adult endothelial cells the MNP appeared innocuous, even at the highest doses tested with respect to ROS and necrosis. This technology has the potential to be used as more than just a vector for gene transfer, because each layer has the potential to perform its own unique function and then degrade to expose the next functional layer

    Immunohistochemical localization of low density lipoprotein receptor-related protein 1 and α2-Macroglobulin in retinal and choroidal tissue of proliferative retinopathies

    Get PDF
    The immunolocalization of the low density lipoprotein receptor-related protein 1 (LRP1) and its ligand α 2-Macroglobulin (α2M) was examined in tissues from human donor eyes of normal, diabetic and sickle cell disease subjects. Streptavidin alkaline phosphatase immunohistochemistry was performed with a mouse anti-human LRP1 and rabbit anti-human α2M antibodies. Retinal and choroidal blood vessels were labeled with mouse anti-human CD34 antibody in adjacent tissue sections. Mean scores for immunostaining from the pathological and control eyes were statistically compared.LRP1 immunoreactivity was very weak to negative in the neural retina of normal subjects except in scattered astrocytes. LRP1 expression in diabetic eyes was detected in the internal limiting membrane (ILM), astrocytes, inner photoreceptor matrix, choriocapillaris and choroidal stroma. The ligand α2M, however, was limited mainly to blood vessel walls, some areas of the inner nuclear layer (INL), photoreceptors, RPE-Bruch's membrane-choriocapillaris complex, intercapillary septa, and choroidal stroma. In sickle cell eyes, avascular and vascular retina as well as choroidal neovascularization (CNV) were analyzed. In avascular areas, LRP1 immunoreactivity was in innermost retina (presumably ILM, astrocytes, and Muller cells) and INL as well as RPE-Bruch's membrane-choriocapillaris complex and choroidal stroma α2M was very weak in avascular peripheral retina compared to vascularized areas and limited to stroma in choroid. In contrast, in areas with CNV, LRP1 immunoreactivity was significantly decreased in overlying retina and in RPE-Bruch's membrane and choroidal stroma compared to the controls, while α2M was elevated in RPE-Bruch's membrane near CNV compared to normal areas in sickle cell choroid. The mean scores revealed that LRP1 and α2M in neural retina were significantly elevated in astrocytes and ILM in diabetic eyes (p ≤ 0.05), whereas in sickle cell eyes scores were elevated in ILM and INL (p ≤ 0.05). In addition, α2M immunoreactivity was in photoreceptors in both ischemic retinopathies. In choroid, the patterns of LRP1 and α2M expression were different and not coincident.This is the first demonstration of the presence of LRP1 and α2M in human proliferative retinopathies. Elevated LRP1 expression in sickle cell neural retina and diabetic inner retina and choroid suggests that LRP1 plays an important role in ischemic neovascular diseases. © 2010 Elsevier Ltd.Fil: Barcelona, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Luna, J. D.. Fundación VER. Departamento de Oftalmología; ArgentinaFil: Chiabrando, Gustavo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Juarez, P. C.. Fundación VER. Departamento de Oftalmología; ArgentinaFil: Bhutto IA. University Johns Hopkins; Estados UnidosFil: McLeod, D. S.. University Johns Hopkins; Estados UnidosFil: Sanchez, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Lutty, G. A.. University Johns Hopkins; Estados Unido

    Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography

    Get PDF
    We demonstrate in vivo choriocapillaris and choroidal microvasculature imaging in normal human subjects using optical coherence tomography (OCT). An ultrahigh speed swept source OCT prototype at 1060 nm wavelengths with a 400 kHz A-scan rate is developed for three-dimensional ultrahigh speed imaging of the posterior eye. OCT angiography is used to image three-dimensional vascular structure without the need for exogenous fluorophores by detecting erythrocyte motion contrast between OCT intensity cross-sectional images acquired rapidly and repeatedly from the same location on the retina. En face OCT angiograms of the choriocapillaris and choroidal vasculature are visualized by acquiring cross-sectional OCT angiograms volumetrically via raster scanning and segmenting the three-dimensional angiographic data at multiple depths below the retinal pigment epithelium (RPE). Fine microvasculature of the choriocapillaris, as well as tightly packed networks of feeding arterioles and draining venules, can be visualized at different en face depths. Panoramic ultra-wide field stitched OCT angiograms of the choriocapillaris spanning ~32 mm on the retina show distinct vascular structures at different fundus locations. Isolated smaller fields at the central fovea and ~6 mm nasal to the fovea at the depths of the choriocapillaris and Sattler's layer show vasculature structures consistent with established architectural morphology from histological and electron micrograph corrosion casting studies. Choriocapillaris imaging was performed in eight healthy volunteers with OCT angiograms successfully acquired from all subjects. These results demonstrate the feasibility of ultrahigh speed OCT for in vivo dye-free choriocapillaris and choroidal vasculature imaging, in addition to conventional structural imaging.National Institutes of Health (U.S.) (NIH R01-EY011289-27)National Institutes of Health (U.S.) (NIH R01-EY013178-12)National Institutes of Health (U.S.) (NIH R44-EY022864-01)National Institutes of Health (U.S.) (NIH R01-CA075289-16)United States. Air Force Office of Scientific Research (AFOSR FA9550-10-1-0551)United States. Air Force Office of Scientific Research (AFOSR FA9550-12-1-0499

    Structural and Functional Changes of the Human Macula during Acute Exposure to High Altitude

    Get PDF
    Background: This study aimed to quantify structural and functional changes at the macula during acute exposure to high altitude and to assess their structure/function relationship. This work is related to the Tuebingen High Altitude Ophthalmology (THAO) study. Methodology/Principal Findings: Spectral domain optical coherence tomography and microperimetry were used to quantify changes of central retinal structure and function in 14 healthy subjects during acute exposure to high altitude (4559 m). High-resolution volume scans and fundus-controlled microperimetry of the posterior pole were performed in addition to best-corrected visual acuity (BCVA) measurements and assessment of acute mountain sickness. Analysis of measurements at altitude vs. baseline revealed increased total retinal thickness (TRT) in all four outer ETDRS grid subfields during acute altitude exposure (TRTouter = 2.8061.00 mm; mean change695%CI). This change was inverted towards the inner four subfields (TRT inner = 21.8960.97 mm) with significant reduction of TRT in the fovea (TRT foveal = 26.6260.90 mm) at altitude. BCVA revealed no significant difference compared to baseline (0.0660.08 logMAR). Microperimetry showed stable mean sensitivity in all but the foveal subfield (MSfoveal = 21.1260.68 dB). At baseline recordings before and.2 weeks after high altitude exposure, all subjects showed equal levels with no sign of persisting structural or functional sequels. Conclusions/Significance: During acute exposure to high altitude central retinal thickness is subject to minor, ye

    Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The existence of large pores in the blood-tumor barrier (BTB) of malignant solid tumor microvasculature makes the blood-tumor barrier more permeable to macromolecules than the endothelial barrier of most normal tissue microvasculature. The BTB of malignant solid tumors growing outside the brain, in peripheral tissues, is more permeable than that of similar tumors growing inside the brain. This has been previously attributed to the larger anatomic sizes of the pores within the BTB of peripheral tumors. Since in the physiological state <it>in vivo </it>a fibrous glycocalyx layer coats the pores of the BTB, it is possible that the effective physiologic pore size in the BTB of brain tumors and peripheral tumors is similar. If this were the case, then the higher permeability of the BTB of peripheral tumor would be attributable to the presence of a greater number of pores in the BTB of peripheral tumors. In this study, we probed <it>in vivo </it>the upper limit of pore size in the BTB of rodent malignant gliomas grown inside the brain, the orthotopic site, as well as outside the brain in temporalis skeletal muscle, the ectopic site.</p> <p>Methods</p> <p>Generation 5 (G5) through generation 8 (G8) polyamidoamine dendrimers were labeled with gadolinium (Gd)-diethyltriaminepentaacetic acid, an anionic MRI contrast agent. The respective Gd-dendrimer generations were visualized <it>in vitro </it>by scanning transmission electron microscopy. Following intravenous infusion of the respective Gd-dendrimer generations (Gd-G5, N = 6; Gd-G6, N = 6; Gd-G7, N = 5; Gd-G8, N = 5) the blood and tumor tissue pharmacokinetics of the Gd-dendrimer generations were visualized <it>in vivo </it>over 600 to 700 minutes by dynamic contrast-enhanced MRI. One additional animal was imaged in each Gd-dendrimer generation group for 175 minutes under continuous anesthesia for the creation of voxel-by-voxel Gd concentration maps.</p> <p>Results</p> <p>The estimated diameters of Gd-G7 dendrimers were 11 ± 1 nm and those of Gd-G8 dendrimers were 13 ± 1 nm. The BTB of ectopic RG-2 gliomas was more permeable than the BTB of orthotopic RG-2 gliomas to all Gd-dendrimer generations except for Gd-G8. The BTB of both ectopic RG-2 gliomas and orthotopic RG-2 gliomas was not permeable to Gd-G8 dendrimers.</p> <p>Conclusion</p> <p>The physiologic upper limit of pore size in the BTB of malignant solid tumor microvasculature is approximately 12 nanometers. In the physiologic state <it>in vivo </it>the luminal fibrous glycocalyx of the BTB of malignant brain tumor and peripheral tumors is the primary impediment to the effective transvascular transport of particles across the BTB of malignant solid tumor microvasculature independent of tumor host site. The higher permeability of malignant peripheral tumor microvasculature to macromolecules smaller than approximately 12 nm in diameter is attributable to the presence of a greater number of pores underlying the glycocalyx of the BTB of malignant peripheral tumor microvasculature.</p

    Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Effective transvascular delivery of nanoparticle-based chemotherapeutics across the blood-brain tumor barrier of malignant gliomas remains a challenge. This is due to our limited understanding of nanoparticle properties in relation to the physiologic size of pores within the blood-brain tumor barrier. Polyamidoamine dendrimers are particularly small multigenerational nanoparticles with uniform sizes within each generation. Dendrimer sizes increase by only 1 to 2 nm with each successive generation. Using functionalized polyamidoamine dendrimer generations 1 through 8, we investigated how nanoparticle size influences particle accumulation within malignant glioma cells.</p> <p>Methods</p> <p>Magnetic resonance and fluorescence imaging probes were conjugated to the dendrimer terminal amines. Functionalized dendrimers were administered intravenously to rodents with orthotopically grown malignant gliomas. Transvascular transport and accumulation of the nanoparticles in brain tumor tissue was measured <it>in vivo </it>with dynamic contrast-enhanced magnetic resonance imaging. Localization of the nanoparticles within glioma cells was confirmed <it>ex vivo </it>with fluorescence imaging.</p> <p>Results</p> <p>We found that the intravenously administered functionalized dendrimers less than approximately 11.7 to 11.9 nm in diameter were able to traverse pores of the blood-brain tumor barrier of RG-2 malignant gliomas, while larger ones could not. Of the permeable functionalized dendrimer generations, those that possessed long blood half-lives could accumulate within glioma cells.</p> <p>Conclusion</p> <p>The therapeutically relevant upper limit of blood-brain tumor barrier pore size is approximately 11.7 to 11.9 nm. Therefore, effective transvascular drug delivery into malignant glioma cells can be accomplished by using nanoparticles that are smaller than 11.7 to 11.9 nm in diameter and possess long blood half-lives.</p

    TGF-β Is Required for Vascular Barrier Function, Endothelial Survival and Homeostasis of the Adult Microvasculature

    Get PDF
    Pericyte-endothelial cell (EC) interactions are critical to both vascular development and vessel stability. We have previously shown that TGF-β signaling between EC and mural cells participates in vessel stabilization in vitro. We therefore investigated the role of TGF-β signaling in maintaining microvessel structure and function in the adult mouse retinal microvasculature. TGF-β signaling was inhibited by systemic expression of soluble endoglin (sEng) and inhibition was demonstrated by reduced phospho-smad2 in the adult retina. Blockade of TGF-β signaling led to increased vascular and neural cell apoptosis in the retina, which was associated with decreased retinal function, as measured by electroretinogram (ERG). Perfusion of the inner retinal vasculature was impaired and was accompanied by defective autoregulation and loss of capillary integrity. Fundus angiography and Evans blue permeability assay revealed a breakdown of the blood-retinal-barrier that was characterized by decreased association between the tight junction proteins zo-1 and occludin. Inhibition of TGF-β signaling in cocultures of EC and 10T1/2 cells corroborated the in vivo findings, with impaired EC barrier function, dissociation of EC from 10T1/2 cells, and endothelial cell death, supporting the role of EC-mesenchymal interactions in TGF-β signaling. These results implicate constitutive TGF-β signaling in maintaining the integrity and function of the adult microvasculature and shed light on the potential role of TGF-β signaling in vasoproliferative and vascular degenerative retinal diseases

    Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors

    Get PDF
    Systemic chemotherapy has been relatively ineffective in the treatment of malignant brain tumors even though systemic chemotherapy drugs are small molecules that can readily extravasate across the porous blood-brain tumor barrier of malignant brain tumor microvasculature. Small molecule systemic chemotherapy drugs maintain peak blood concentrations for only minutes, and therefore, do not accumulate to therapeutic concentrations within individual brain tumor cells. The physiologic upper limit of pore size in the blood-brain tumor barrier of malignant brain tumor microvasculature is approximately 12 nanometers. Spherical nanoparticles ranging between 7 nm and 10 nm in diameter maintain peak blood concentrations for several hours and are sufficiently smaller than the 12 nm physiologic upper limit of pore size in the blood-brain tumor barrier to accumulate to therapeutic concentrations within individual brain tumor cells. Therefore, nanoparticles bearing chemotherapy that are within the 7 to 10 nm size range can be used to deliver therapeutic concentrations of small molecule chemotherapy drugs across the blood-brain tumor barrier into individual brain tumor cells. The initial therapeutic efficacy of the Gd-G5-doxorubicin dendrimer, an imageable nanoparticle bearing chemotherapy within the 7 to 10 nm size range, has been demonstrated in the orthotopic RG-2 rodent malignant glioma model. Herein I discuss this novel strategy to improve the effectiveness of systemic chemotherapy for the treatment of malignant brain tumors and the therapeutic implications thereof
    corecore