44 research outputs found

    A model for the atomic-scale structure of a dense, nonequilibrium fluid: the homogeneous cooling state of granular fluids

    Full text link
    It is shown that the equilibrium Generalized Mean Spherical Model of fluid structure may be extended to nonequilibrium states with equation of state information used in equilibrium replaced by an exact condition on the two-body distribution function. The model is applied to the homogeneous cooling state of granular fluids and upon comparison to molecular dynamics simulations is found to provide an accurate picture of the pair distribution function.Comment: 29 pages, 11 figures Revision corrects formatting of the figure

    Unified description of long-time tails and long-range correlation functions for sheared granular liquids

    Full text link
    Unified description on the long-time tail of velocity autocorrelation function and the long-range correlation for the equal-time spatial correlation functions is developed based on the generalized fluctuating hydrodynamics. The cross-over of the long-time tail from t3/2t^{-3/2} to t5/2t^{-5/2} is predicted independent of the density, and the equal-time spatial density correlation function and the equal-time spatial velocity correlation function respectively satisfy r11/3r^{-11/3} and r5/3r^{-5/3} for large rr limit.Comment: 10 pages. to be published in Euro. Phys. J.

    Montecarlo simulation of the role of defects as the melting mechanism

    Full text link
    We study in this paper the melting transition of a crystal of fcc structure with the Lennard-Jones potential, by using isobaric-isothermal Monte Carlo simulations. Local and collective updates are sequentially used to optimize the convergence. We show the important role played by defects in the melting mechanism in favor of modern melting theories.Comment: 6 page, 10 figures included. Corrected version to appear in Phys. Rev.

    Shear-induced quench of long-range correlations in a liquid mixture

    Full text link
    A static correlation function of concentration fluctuations in a (dilute) binary liquid mixture subjected to both a concentration gradient and uniform shear flow is investigated within the framework of fluctuating hydrodynamics. It is shown that a well-known c2/k4|\nabla c|^2/k^4 long-range correlation at large wave numbers kk crosses over to a weaker divergent one for wave numbers satisfying k<(γ˙/D)1/2k<(\dot{\gamma}/D)^{1/2}, while an asymptotic shear-controlled power-law dependence is confirmed at much smaller wave numbers given by k(γ˙/ν)1/2k\ll (\dot{\gamma}/\nu)^{1/2}, where cc, γ˙\dot{\gamma}, DD and ν\nu are the mass concentration, the rate of the shear, the mass diffusivity and the kinematic viscosity of the mixture, respectively. The result will provide for the first time the possibility to observe the shear-induced suppression of a long-range correlation experimentally by using, for example, a low-angle light scattering technique.Comment: 8pages, 2figure

    On the validity of the Boltzmann equation to describe low density granular systems

    Get PDF
    The departure of a granular gas in the instable region of parameters from the initial homogeneous cooling state is studied. Results from Molecular Dynamics and from Direct Monte Carlo simulation of the Boltzmann equation are compared. It is shown that the Boltzmann equation accurately predicts the low density limit of the system. The relevant role played by the parallelization of the velocities as time proceeds and the dependence of this effect on the density is analyzed in detail

    First normal stress difference and crystallization in a dense sheared granular fluid

    Full text link
    The first normal stress difference (N1{\mathcal N}_1) and the microstructure in a dense sheared granular fluid of smooth inelastic hard-disks are probed using event-driven simulations. While the anisotropy in the second moment of fluctuation velocity, which is a Burnett-order effect, is known to be the progenitor of normal stress differences in {\it dilute} granular fluids, we show here that the collisional anisotropies are responsible for the normal stress behaviour in the {\it dense} limit. As in the elastic hard-sphere fluids, N1{\mathcal N}_1 remains {\it positive} (if the stress is defined in the {\it compressive} sense) for dilute and moderately dense flows, but becomes {\it negative} above a critical density, depending on the restitution coefficient. This sign-reversal of N1{\mathcal N}_1 occurs due to the {\it microstructural} reorganization of the particles, which can be correlated with a preferred value of the {\it average} collision angle θav=π/4±π/2\theta_{av}=\pi/4 \pm \pi/2 in the direction opposing the shear. We also report on the shear-induced {\it crystal}-formation, signalling the onset of fluid-solid coexistence in dense granular fluids. Different approaches to take into account the normal stress differences are discussed in the framework of the relaxation-type rheological models.Comment: 21 pages, 13 figure

    Molecular dynamics study of melting of a bcc metal-vanadium II : thermodynamic melting

    Full text link
    We present molecular dynamics simulations of the thermodynamic melting transition of a bcc metal, vanadium using the Finnis-Sinclair potential. We studied the structural, transport and energetic properties of slabs made of 27 atomic layers with a free surface. We investigated premelting phenomena at the low-index surfaces of vanadium; V(111), V(001), and V(011), finding that as the temperature increases, the V(111) surface disorders first, then the V(100) surface, while the V(110) surface remains stable up to the melting temperature. Also, as the temperature increases, the disorder spreads from the surface layer into the bulk, establishing a thin quasiliquid film in the surface region. We conclude that the hierarchy of premelting phenomena is inversely proportional to the surface atomic density, being most pronounced for the V(111) surface which has the lowest surface density

    Development of a tight-binding potential for bcc-Zr. Application to the study of vibrational properties

    Get PDF
    We present a tight-binding potential based on the moment expansion of the density of states, which includes up to the fifth moment. The potential is fitted to bcc and hcp Zr and it is applied to the computation of vibrational properties of bcc-Zr. In particular, we compute the isothermal elastic constants in the temperature range 1200K < T < 2000K by means of standard Monte Carlo simulation techniques. The agreement with experimental results is satisfactory, especially in the case of the stability of the lattice with respect to the shear associated with C'. However, the temperature decrease of the Cauchy pressure is not reproduced. The T=0K phonon frequencies of bcc-Zr are also computed. The potential predicts several instabilities of the bcc structure, and a crossing of the longitudinal and transverse modes in the (001) direction. This is in agreement with recent ab initio calculations in Sc, Ti, Hf, and La.Comment: 14 pages, 6 tables, 4 figures, revtex; the kinetic term of the isothermal elastic constants has been corrected (Eq. (4.1), Table VI and Figure 4

    Generation of defects and disorder from deeply quenching a liquid to form a solid

    Full text link
    We show how deeply quenching a liquid to temperatures where it is linearly unstable and the crystal is the equilibrium phase often produces crystalline structures with defects and disorder. As the solid phase advances into the liquid phase, the modulations in the density distribution created behind the advancing solidification front do not necessarily have a wavelength that is the same as the equilibrium crystal lattice spacing. This is because in a deep enough quench the front propagation is governed by linear processes, but the crystal lattice spacing is determined by nonlinear terms. The wavelength mismatch can result in significant disorder behind the front that may or may not persist in the latter stage dynamics. We support these observations by presenting results from dynamical density functional theory calculations for simple one- and two-component two-dimensional systems of soft core particles.Comment: 25 pages, 11 figure

    Consequences of temperature fluctuations in observables measured in high energy collisions

    Full text link
    We review the consequences of intrinsic, nonstatistical temperature fluctuations as seen in observables measured in high energy collisions. We do this from the point of view of nonextensive statistics and Tsallis distributions. Particular attention is paid to multiplicity fluctuations as a first consequence of temperature fluctuations, to the equivalence of temperature and volume fluctuations, to the generalized thermodynamic fluctuations relations allowing us to compare fluctuations observed in different parts of phase space, and to the problem of the relation between Tsallis entropy and Tsallis distributions. We also discuss the possible influence of conservation laws on these distributions and provide some examples of how one can get them without considering temperature fluctuations.Comment: Revised version of the invited contribution to The European Physical Journal A (Hadrons and Nuclei) topical issue about 'Relativistic Hydro- and Thermodynamics in Nuclear Physics' guest eds. Tamas S. Biro, Gergely G. Barnafoldi and Peter Va
    corecore