4 research outputs found

    Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method

    Full text link
    Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data

    Range-separated hybrid functionals in the density functional-based tight-binding method

    Get PDF
    Density functional-based tight-binding (DFTB) is a versatile, computationally efficient approximate electronic structure method, which is successfully applied in solid-state physics and chemistry. As an approximate Kohn-Sham density functional theory (DFT) it naturally inherits the flaws of the approximate local or gradient-corrected exchange-correlation functionals used for practical calculations. The behaviour known as delocalization problem leads to wrong description of fundamental gaps, ionization energies, response to electric fields, bond-length alternation in conjugate polymers. In this thesis we present the extension of the DFTB method to the class of range-separated hybrid exchange-correlation functionals, which significantly reduce the delocalization problem. We describe in detail the implementation and parametrization of the new scheme and apply it to a series of physical systems, where the delocalization problem of the local DFT and DFTB plays an important role

    Charge transfer excitations from particle-particle random phase approximation—Opportunities and challenges arising from two-electron deficient systems

    No full text
    The particle-particle random phase approximation (pp-RPA) is a promising method for studying charge transfer (CT) excitations. Through a detailed analysis on two-electron deficient systems, we show that the pp-RPA is always able to recover the long-distance asymptotic -1/R trend for CT excitations as a result of the concerted effect between orbital energies and the pp-RPA kernel. We also provide quantitative results for systems with relatively short donor-acceptor distances. With conventional hybrid or range-separated functionals, the pp-RPA performs much better than time-dependent density functional theory (TDDFT), although it still gives underestimated results which are not as good as TDDFT with system-dependent tuned functionals. For pp-RPA, there remain three great challenges in dealing with CT excitations. First, the delocalized frontier orbitals in strongly correlated systems often lead to difficulty with self-consistent field convergence as well as an incorrect picture with about half an electron transferred. Second, the commonly used density functionals often underestimate the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (LUMO) for the two-electron deficient species, resulting in systems with delocalized orbitals. Third, the performance of pp-RPA greatly depends on the energy difference between the LUMO and a higher virtual orbital. However, the meaning of the orbital energies for higher virtual orbitals is still not clear. We also discuss the performance of an approximate pp-RPA scheme that uses density functional tight binding (pp-DFTB) as reference and demonstrate that the aforementioned challenges can be overcome by adopting suitable range-separated hybrid functionals. The pp-RPA and pp-DFTB are thus promising general approaches for describing charge transfer excitations. Published by AIP Publishing

    Time-Dependent Extension of the Long-Range Corrected Density Functional Based Tight-Binding Method

    No full text
    We present a consistent linear response formulation of the density functional based tight-binding method for long-range corrected exchange-correlation functionals (LC-DFTB). Besides a detailed account of derivation and implementation of the method, we also test the new scheme on a variety of systems considered to be problematic for conventional local/semilocal time-dependent density functional theory (TD-DFT). To this class belong the optical properties of polyacenes and nucleobases, as well as charge transfer excited states in molecular dimers. We find that the approximate LC-DFTB method.exhibits the same general trends and similar accuracy as range separated DFT methods at significantly reduced computational cost. The scheme should be especially useful in the determination of the electronic excited states of very conventional TD-DFT is supposed to fail due to a multitude of artificial low energy states
    corecore