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INTRODUCTION

The understanding of the electronic structure of atoms, molecules and solids is indispensable

for the understanding of the fascinating properties of these physical systems, which justly

awaken the interest of both academia and industry. This gives rise to a truly broad spectrum of

research activities, including a variety of theoretical approaches. By introducing specific concepts

and formalizing them mathematically, the model descriptions arise, which help to deepen the

understanding of the condensed matter physics.

Remarkably, the exact electronic structure of a many-electron system can be in principle ob-

tained from the solution of a boundary value problem with the many-body Schrödinger equation.

This is the starting point for the methods, based on the concept of the wave function. Together

with density functional theory (DFT) they constitute the class of first-principles (ab initio) meth-

ods, which basically allow to obtain exact description of the electronic structure. In practice,

however, the exact solution of many-electron systems from these both approaches is not feasible.

The reasons in both cases, though are different. While the accuracy of the wave-function based

methods is in principle limited by the available computational resources, the computationally

low priced DFT in it’s Kohn-Sham formulation (KS-DFT) relies on inevitable approximations

to the exchange-correlation (xc) energy functional. Thus, what practically really matters is the

computational effort to accuracy ratio. The result of which quality can be obtained at a given

computational cost? From this point of view, the methods, which allow approximate solutions

to the exact problem, but at highly reduced cost become increasingly interesting. The density

functional-based tight-binding method (DFTB) is one of such methods, which is derived from a

specific KS-DFT with a particular approximate exchange-correlation energy functional by apply-

ing a set of approximations. These approximations allow to drastically reduce the computational

effort, while keeping the accuracy at acceptable level. The reduction of the computational cost

is mainly due to the simple structure of the DFTB equations, which depend on a small set of

precomputed parameters.

Usually the exchange-correlation functional in the KS-DFT is modeled within the so called

local density approximation (LDA) and it’s generalizations. The simple structure and remarkable

accuracy of the exchange-correlation functionals, which emerge from this approach and usually

called local functionals, makes them important for practical calculations. However, the KS-DFT

with local functionals exhibits systematic failures. This behavior is known as the delocalization

problem and is usually connected to the concept of self-interaction error (SIE). In depth investiga-
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INTRODUCTION

tion of the delocalization problem resulted in a variety of correction schemes, which successfully

deal with it and thus improve the performance of the KS-DFT albeit with moderate increase

in computational cost. In particular, the class of range-separated hybrid exchange-correlation

functionals deals with the delocalization problem to a great extent. These functionals require

the inclusion of a range-dependent Hartree-Fock exchange term, which results in the hybrid

Hartree-Fock-DFT calculation.

It is known, that the traditional DFTB, which is derived from the KS-DFT with a local

exchange-correlation functional inherits the curse of the delocalization problem [43]. The success

of the KS-DFT with range-separated hybrid functionals gives rise to the expectation, that the

approximate methods, which are derived from it will be less prone to the delocalization problem.

In ref. [137] the usual DFTB approximations have been formally applied to a DFT with a long-

range corrected functional (LC-DFT), which is a special case of a range-separated functional

(compare also section 2.3 of this thesis). The legitimacy of such approximations with respect to

the new functional has been provided. This is the starting point of the work, presented in this

thesis, which is organized as follows.

In chapter 1 we introduce the DFT as initially formulated by Hohenberg and Kohn and

it’s formulation as a single-particle theory, given by Kohn and Sham (KS-DFT). We give brief

comment on the local density approximation and generalized gradient approximation. We also

briefly introduce the traditional DFTB method.

In chapter 2 we discuss the delocalization problem and comment on the hybrid functionals,

which are usually able to deal with the delocalization problem. In particular, the definition of the

range-separated functionals is given.

The technical part I of this thesis is dedicated to the implementation and parametrization

of the new scheme. The specific parametrization, which is used in this thesis is called the long-

range corrected DFTB (LC-DFTB). The in depth description of the method, discussion on the

choice of the underlying exchange-correlation functional, specific aspects of the parametrization

and numerical efficiency of the current run-time implementation are found in chapter 3. The

DFTB method by construction relies on a set of precomputed parameters. The modification of

parametrization programs is necessary in order to perform the parametrization of the DFTB

method with a new functional. We address the aspects of these modifications in chapter 4, where

the integration routines for the evaluation of specific two-electron integrals are described. In

chapter 5 the parametrization of the repulsive potential, in particular important for the geometry

optimization for the elements C and H is described.

In the part II we apply the LC-DFTB method to a series of problems, which are usually

insufficiently described by the DFT with local functionals and by traditional DFTB. In chapter 7

for the first time the LC-DFTB method is applied to a series of organic molecules. We discuss the

frontier orbital energies as obtained from the new method and compare them to the experimental

data (where available), the traditional DFTB method and the first-principles DFT with local
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and with long-range corrected functionals. We furthermore discuss the possibility of obtaining

photoemission spectra from LC-DFTB. The comparison of computational times of LC-DFTB

against first-principles approaches and traditional DFTB is addressed as well. In chapter 8 we

apply the LC-DFTB to trans-polyacetylene oligomers and study again quantities, which are

problematic for the traditional DFTB method. This includes the difference in single and double

bond lengths also known as bond length alternation, response to the electric field (specifically the

static longitudinal polarizability) and the formation of polaronic defects in the doped polymer.

Finally, the application of LC-DFTB to the two selected proteins in zwitterionic conformation in

gas-phase is performed.

In the appendix, the supplementary information to the chapters of the main text can be found.

In appendix A the analytical formulas for the long-range γ−integral, which is important in the

new method, are derived. In appendix B the algorithm for the evaluation of the average potential

from converged orbitals, which is used for a calculation in chapter 2 is described. This method

was initially mentioned in ref. [9]. In appendix C the numerical algorithm for the correction of

decay constants (see also section 3.8) is presented. The appendix D accompanies the description

of the repulsive potential parametrization in chapter 5 and contains the summary of bond lengths

and angles of a benchmark set of selected hydrocarbons as obtained from the LC-DFTB and

other methods, compared to experiment. The vibrational frequencies of the reference molecules,

used for the parametrization, are presented as well. Finally in appendix E the pseudo code and

corresponding equations for the neighbor list-based evaluation of the energy gradients (section

3.10) are presented, which accompany the source code of the implementation in the DFTB+ code

[6].
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1
DENSITY FUNCTIONAL THEORY AND APPROXIMATIONS

In quantum theory the central concept is the wave function Ψ. The energy of a physical system

is the functional of the wave function and the variational principle holds

E[Ψ]≥ E[Ψ0], (1.1)

where the wave function Ψ0 represents the ground state and the equality holds for Ψ=Ψ0. The

wave function is the solution of the stationary Schrödinger boundary value problem

ĤΨ= EΨ. (1.2)

Here Ĥ is the Hamilton operator, which can be constructed in an intuitive way from the classical

pendants via correspondence principle. For example, a N-electron system in non-relativistic limit

and in Born-Oppenheimer approximation is described by the many-body Hamiltonian in the real

space representation 1

Ĥ =−1
2

N∑
i=1

∇2
i︸ ︷︷ ︸

T̂

+ 1
2

N∑
i 6= j

1
|ri −r j|︸ ︷︷ ︸
V̂ee

+
N∑

i=1

M∑
A=1

−ZA

|ri −RA|︸ ︷︷ ︸
V̂ext

, (1.3)

where ri is the coordinate of the i−th electron, ZA and RA are the charge and coordinate of the

nuclei A. The corresponding wave function Ψ =Ψ(x1,x2, ...,xN ) depends on coordinates xi of

the i−th electron, which comprise space coordinates ri and spin coordinates ωi. From the wave

function the expectation value of each observable can be obtained. The energy functional is the

expectation value of the Hamilton operator, provided 〈Ψ|Ψ〉 = 1

E[Ψ]= 〈Ψ|Ĥ|Ψ〉 = 〈Ψ|T̂|Ψ〉+〈Ψ|V̂ee|Ψ〉+〈Ψ|V̂ext|Ψ〉 = T[Ψ]+Vee[Ψ]+
∫
ρ(r)vext(r)dr. (1.4)

1in this thesis we use atomic units if not stated otherwise.
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CHAPTER 1. DENSITY FUNCTIONAL THEORY AND APPROXIMATIONS

Note, that the expectation value of the kinetic energy operator T[Ψ]= 〈Ψ|T̂|Ψ〉 and the electron-

electron interaction energy operator Vee[Ψ]= 〈Ψ|V̂ee|Ψ〉 depend only on the number of electrons

N. The variational principle, the particle number N and the external potential determine the

ground state wave function.

This approach to the exact description of many-electron systems like atoms or molecules,

however, turns out to be problematic in practice. For large electron numbers it faces, what W.

Kohn calls the exponential wall [97]. The effort to store and construct an accurate approximation

to the exact wave function, as well as to minimize the corresponding energy functional grows

exponentially for increasing system size. Thus usually different levels of approximations are

introduced. One of the most famous in this context is the Hartree-Fock (HF) approximation. For

a given many-body Hamiltonian it is the wave function which is approximated. One assumes

that the system is described by an antisymmetric product of single-particle wave functions

(Slater determinant). The HF approximation results in the theory which includes the classical

electron repulsion and quantum mechanical Pauli-principle. However, the purely quantum

mechanical electron-electron repulsion, known as correlation energy, is not included in the HF

theory. 2 Nevertheless, it is the starting point for the correlated wave function-based methods,

generally called post-Hartree-Fock methods. This includes the configuration interaction (CI)

[181], perturbation theory (MP2) [128], Hedin approximation (GW) [7, 66] and coupled cluster

(CC) [130] methods. Despite their success and high accuracy these methods still have tremendous

computational demands. They are not practicable for extended systems. In fact their high

computational requirements are still related to the fact, that the approximate representation

of a highly complex exact wave-function beyond single Slater determinant is exploited. The

alternative approach due to Hohenberg and Kohn is described in following.

1.1 HOHENBERG-KOHN DENSITY FUNCTIONAL THEORY

As has been already stated in the wave function-based methods the knowledge of the wave

function implies knowledge over every observable of the system in the corresponding state. So,

for example the density of a system, which can be directly measured, is obtained from the wave

function according to

ρ(r1)= N
∫

|Ψ(x1,x2, ...xN )|2 dω1dx2...dxN . (1.5)

Hohenberg and Kohn asked, whether the knowledge of the ground state density implies knowl-

edge over every observable in the ground state? With other words, does the density uniquely de-

termine the ground state of a physical system? They showed, that the description of a N−electron

system by a wave function and corresponding Schrödinger equation can be replaced by an

equivalent theory, based on the electronic density [72].

2The correlation energy Ec is often defined as the difference of exact and Hartree-Fock energies.

2



1.2. PRACTICAL DFT: THE KOHN-SHAM APPROACH

The theory is based on two theorems. The first one states: The external potential vext(r) is

determined by the ground state electron density ρ0(r) up to a trivial additive constant. Thus

a ground state density, which yields N = ∫
ρ(r) dr determines the wave function and thus all

ground state properties of an N−electron system. The proof of the theorem can be found in ref.

[72]. The total energy of the system is the functional of density

E[ρ]= F[ρ]+
∫
ρ(r)vext(r) dr, (1.6)

where the functional F[ρ]= T[ρ]+Vee[ρ] is composed of kinetic and electron interaction energies,

which itself are functionals of density. This functional is called the universal functional for a

N−electron system, since it does not depend on the external potential. The second theorem

constitutes the variational principle. Given a density ρ′ and the ground state density ρ0, for the

fixed external potential the energy functional obeys the inequality

E[ρ′]≥ E[ρ0], (1.7)

where the equality holds for the case ρ′ = ρ0. Thus, ground state energy and the corresponding

density can be obtained from

δ

{
E[ρ]−µ

∫
ρ(r) dr

}
= 0 (1.8)

with some Lagrange multiplier µ, which is characteristic to the system and can be identified

as the chemical potential of the system [148]. In this case the density corresponds to the global

minimum of the energy functional.

The simplicity of the Hohenberg-Kohn theory faces a serious challenge, which is still not

overcome. The explicit form of the universal functional is not known and is suspected to be

complicated. In this respect the universal functional plays the role of the exact wave function in

the wave function-based methods.

In following we present the approach due to Kohn and Sham [98]. They show an elegant way

how to relate an effective single particle theory to the Hohenberg-Kohn theory. The “unknown

and complicated” in their approach is placed into a small part of the universal energy functional,

while the rest is treated on the same footing as in the wave function-based single particle theory

(like HF). Despite it’s single particle form, it is exact.

1.2 PRACTICAL DFT: THE KOHN-SHAM APPROACH

We now show how to come from the Hohenberg-Kohn energy functional to a practical scheme.

The Hohenberg-Kohn energy functional can be defined in the following way [111, 112]

E[ρ]= min
Ψ→ρ

〈Ψ| T̂ + V̂ee |Ψ〉︸ ︷︷ ︸
F[ρ]

+
∫
ρ(r)vext(r) dr, (1.9)

3



CHAPTER 1. DENSITY FUNCTIONAL THEORY AND APPROXIMATIONS

where the F[ρ] is the universal functional, which depends only on the number of particles. Here

the notation Ψ→ ρ means that the minimization process runs over all valid many-body wave

functions, which yield the density ρ. The universal functional is not known. The idea is to

represent the functional by some known model, which contributes the most to the energy and

the rest, which is then approximated. The universal functional for a non-interacting fermionic

system is

F0[ρ]=min
Φ→ρ

〈Φ| T̂ |Φ〉 = T0[ρ], (1.10)

where the wave function Φ= |φ1φ2...φN | is the Slater determinant. The density can be expressed

in terms of the single-particle orbitals ρ(r)=
N∑
i
|φi(r)|2. The key point in this procedure is that

the minimization is performed over the Slater determinants, which yield the same density as

the interacting wave functions in Eq. 1.9. For more detailed discussion of the foundations of the

Hohenberg-Kohn DFT and Kohn-Sham DFT (KS-DFT) we refer to ref. [143]. The energy is then

expressed in terms of classical Coulomb interaction (Hartree term) EH[ρ]= ∫ ρ(r)ρ(r′)
|r−r′| drdr′, the

non-interacting kinetic energy T0 =∑
i
∫
φi(r)(−1

2∇2)φi(r)dr, the energy due to the interaction

with the external potential vext(r) and the rest, which is referred to as the exchange-correlation

(xc) energy Exc

E[ρ]= T0[ρ]+EH[ρ]+
∫

vext(r)ρ(r)dr+Exc[ρ]. (1.11)

The Exc accounts for quantum mechanical electron-electron interaction effects. We rewrite the

universal energy functional

F[ρ]= T0[ρ]+EH[ρ]+ [
T[ρ]+V [ρ]−T0[ρ]−EH[ρ]

]︸ ︷︷ ︸
Exc[ρ]

, (1.12)

where the last term defines the exchange-correlation functional. The minimization due to the

density in Eq. 1.8 can be replaced by an equivalent minimization due to a set of orbitals, which

constitute a Slater determinant. This gives the set of N Kohn-Sham equations(
−1

2
∇2 +vKS(r)

)
φi(r)= εiφi(r) (1.13)

with a local effective Kohn-Sham potential

vKS(r)= vext(r)+
∫

ρ(r′)
|r−r′| dr′+vxc(r), (1.14)

where the exchange-correlation potential is defined as the functional derivative of the exchange-

correlation energy vxc(r) = δExc
δρ

. Thus the interacting system can be mapped onto the non-

interacting with modified local effective potential. We again emphasize, that the KS-DFT is by

construction exact. However, in practice the unknown exchange-correlation functional has still to

be approximated. These approximations lead to some spectacular failures of DFT, which we will

discuss in chapter 2.

4



1.2. PRACTICAL DFT: THE KOHN-SHAM APPROACH

1.2.1 Local density approximation (LDA)

Kohn and Sham proposed a simple approximate form of the exchange-correlation functional,

expressed in terms of density ρ(r) and exchange-correlation energy density per particle εLDA
xc (r)

of an uniform electron gas with density ρ

ELDA
xc =

∫
εLDA

xc [ρ](r)ρ(r) dr. (1.15)

The latter is split into exchange and correlation parts,

εLDA
xc [ρ](r)= εLDA

x [ρ](r)+εLDA
c [ρ](r). (1.16)

The exchange part is given by the Slater formula for uniform electron gas

εLDA
x [ρ](r)=−3

4

(
3ρ(r)
π

)1/3
. (1.17)

The explicit expression for the correlation part εLDA
c [ρ](r) is not known. Instead it is parametrized

from the available numerical quantum Monte-Carlo data [30].

1.2.2 Generalized gradient approximation (GGA)

While the LDA functionals depend only on the density at the evaluation point, the generalized

gradient approximation functionals use the information about the density behavior around the

evaluation point. This is done by introducing the explicit dependence on the density gradients in

addition to the density. This additional information leads to a significant qualitative improvement

over the LDA functionals in terms of atomization energies, exchange and correlation energies,

reaction barriers. The GGA functionals are usually formulated as the extended LDA functional

EGGA
xc =

∫
ρ(r)εLDA

xc [ρ](r)F(s) dr (1.18)

with the GGA enhancement factor F(s), which depends on the reduced density gradient s =
|∇ρ|
ρ

1
2(3π2ρ)1/3 . The GGA functionals in general outperform the LDA functionals (see for example

refs. [1, 34, 106]).

The methods, presented in this thesis have been developed based on the LDA functional and

GGA functional of Perdew, Burke and Ernzerhof (PBE) [146]. The latter is defined for the case of

spin unpolarized system as

EPBE
x =

∫
ρ(r)εLDA

x (r)
[
1+κ− κ

1+ (µ/κ)s2

]
dr (1.19)

EPBE
c =

∫
ρ(r)

[
εLDA

c (r)+γ ln
(
1+ β

γ

t2 + At4

1+ At2 + A2t4

)]
dr, (1.20)

where the constants µ= 0.21951,κ= 0.804,β= 0.066725,γ= 0.031091 appear and t = |∇ρ|(2ksρ)−1,

ks =
√

4kF
πa0

, kF = (3π2ρ)1/3 and A = β
γ

[
exp

(−εLDA
c /(γe2/a0)

)−1
]−1. The functional is developed to

fulfill a set of exact conditions of the exchange-correlation functional and contains no empirical

parameters.
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CHAPTER 1. DENSITY FUNCTIONAL THEORY AND APPROXIMATIONS

1.3 DFTB: THE APPROXIMATE PBE-BASED DFT

The Kohn-Sham method is implemented in nearly every general purpose quantum chemistry

program package. The program packages use highly optimized algorithms which are the result of

a half a century of intensive scientific research. Still, the applicability of the Kohn-Sham DFT,

dependent on the desired information extent and it’s precision (provided we are interested in

qualitatively meaningful results), is restricted to the systems up to a several hundreds of atoms

in size. In order to access the systems which are well beyond the computational limits of the DFT

at the given moment of time the approximate methods are developed.

In following we introduce the method, which can be classified as an approximate Kohn-Sham

DFT, the density functional-based tight-binding method (DFTB) [42, 46, 155, 175]. Formally it is

similar to the empirical tight-binding schemes [56, 76], but in contrast to these it is derived from

the DFT with LDA or GGA xc-functional. Thus in fact it is the approximated DFT, rather than a

model, parametrized from empirical data.

The DFTB approximations lead to the energy, which is formulated in terms of two-center

parameters, which depend on the interatomic distance RAB

E =
occ∑
i

basis∑
µν

cµi cνiH0
µν(RAB)+ 1

2

atoms∑
AB

γAB(RAB)∆qA∆qB + 1
2

atoms∑
AB

VAB(RAB). (1.21)

The coefficients cµi represent the molecular Kohn-Sham orbital ψi, which is approximated by a

linear combination of atom-centered functions φµ (LCAO ansatz)

ψi(r)=
basis∑
µ

cµiφµ(r). (1.22)

These functions are orthogonal on each atom, but not orthogonal if they are on distinct atoms.

Their overlap integral is denoted by Sµν =
∫
φµ(r)φν(r)dr. The molecular orbital (MO) coefficients

cµi are obtained by solving the generalized eigenvalue problem

∑
ν

(
H0
µν+

1
2

Sµν

atoms∑
C

(γAC +γBC)∆qC

)
cνi = εi

∑
ν

Sµνcνi, (1.23)

which can be derived by applying the variational principle to the DFTB energy expression with

respect to the MO coefficients. Here the Mulliken atomic charges are defined as

∆qA = 1
2

∑
µ∈A

∑
ν

occ∑
i

(
cµi cνiSµν+ cνi cµiSνµ

)− q0
A, (1.24)

where q0
A is the number of valence electrons of the atom A. The parameters γAB for the case

A 6= B are parametrized as [42]

γAB(R)= 1
R

−
[

e−τAR

(
τ4

BτA

2(τ2
A −τ2

B)2
− τ6

B −3τ4
Bτ

2
A

(τ2
A −τ2

B)3R

)
+ e−τBR

(
τ4

AτB

2(τ2
B −τ2

A)2
− τ6

A −3τ4
Aτ

2
B

(τ2
B −τ2

A)3R

)]
, (1.25)

6



1.3. DFTB: THE APPROXIMATE PBE-BASED DFT

where the parameter τA is obtained from the condition that the Hubbard derivative U for a

single atom A calculated from the reference DFT-PBE calculation should be equal to the Hubbard

parameter, obtained from the DFTB calculation

U = ∂2Eatom,PBE

∂n2
!= ∂2Eatom,DFTB

∂∆q2 = γAA = 5
16
τA, (1.26)

where γAA is the on-site γ−parameter and the derivative ∂2Eatom,PBE

∂n2 is performed numerically

with respect to the occupation number n of the highest occupied molecular orbital (HOMO). For

the DFTB the Hubbard derivative is known analytically and equals to the on-site γ−parameter

γAA = 5
16τA. The distance dependent γ-parameters represent the approximated electron repulsion

integrals and effectively contain the contributions due to the exchange-correlation potential. The

zeroth-order Hamiltonian H0
µν is defined as

H0
µν =


εfree atom
µ µ= ν
〈φµ|HDFT-PBE[ρA +ρB]|φν〉 µ ∈ A,ν ∈ B

0 else,

(1.27)

where εfree atom
µ is the eigenvalue of a spherically symmetric free pseudo-atom, obtained from

the DFT-PBE calculation, and HDFT-PBE[ρA +ρB] is the DFT-PBE Hamiltonian evaluated at the

reference density ρ = ρA +ρB, which is a simple superposition of atomic densities ρA,ρB. Finally,

the repulsive pair-potentials VAB for a pair of atomic species are obtained by a fit to the total

energies of a reference DFT method.

The DFTB method operates with precomputed parameters and simple analytical formulas.

These quantities, apart from the repulsive potential, are directly connected to the quantities in

KS-DFT, which is being approximated by the DFTB. This will become more evident in chapter 3,

where we derive the DFTB method as an approximation of a long-range corrected hybrid DFT

(section 2.3), which contains the PBE-based DFTB (standard DFTB) as a special case. Together

with small number of basis functions per atom the efficient large scale calculations (≈ 10000

atoms) are possible. This opens the possibility to study large biological systems, perform the

potential energy scans, do the molecular dynamics simulations for both extended systems and

large time scales [35, 42, 43, 50].

7





C
H

A
P

T
E

R

2
DELOCALIZATION PROBLEM AND RANGE-SEPARATED HYBRID

FUNCTIONALS

The GGA and LDA functionals, mentioned in previous chapter have an excellent accuracy to

computational cost ratio and are usually easy to implement. They depend on the density and

it’s gradients in an explicit way and usually called local or semilocal functionals. However, the

DFT with this class of exchange-correlation functionals exhibits remarkable failures. Incorrect

dissociation limits of molecules [11, 205], instability of anions [184, 199], absence of Rydberg

series [9], underestimation of reaction barriers [34], overestimation of the electric field response

[196, 205], generally bad description of localized states [45, 192] are often mentioned in this

context. The approximations to the DFT with local xc-functionals, such as the DFTB method

(section 1.3) inherit this erroneous behavior [77, 118, 137, 158].

2.1 SELF-INTERACTION ERROR

The aforementioned failures have a common root: the inability of the DFT with local xc-functionals

to deal with the self-interaction error (SIE), also known as delocalization problem. The standard

illustration of this behavior is the dissociation of a H+
2 molecule ion [11]. Local DFT predicts two

protons at infinite separation with half an electron around each of them. The self-interaction of

the only electron, which is by construction included in the Hartree energy should be cancelled

by the exact exchange-correlation energy. In the HF-theory it is the case and the dissociation

limit is correct. The approximate form of the xc-functional in the local DFT, however, gives rise

to spurious, unphysical self-interaction. Extending this reasoning to the systems with many

electrons the functional is called one-electron self-interaction free, if it fulfills the condition

Exc[ρ i]+EH[ρ i]= 0, (2.1)

9
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Figure 2.1: The LDA potential and averaged HF and BNL-Y (section 3.1) potentials for a single
argon atom as a function of distance from nuclei. The gray dashed line indicates the correct −1/r
limit.

where ρ i = |ψi|2 is the one-electron density [150]. It is in general expected, that the self-interaction

error should be connected to the properties of the xc-potential. For example, physically it is

expected, that an electron of a finite charge-neutral system, if removed to infinity (the system is

ionized), interacts with the hole, which is created in this electron removal process. This implies,

that the potential, which is seen by the electron should exhibit the −1/r asymptotics [3]

lim
|r|→∞

vxc(r)=− 1
|r| . (2.2)

In Fig. 2.1 the LDA potential of an argon atom as a function of distance from nucleus is depicted.

It decays exponentially, much faster than the correct −1/r limit, indicated here by the gray

dashed line. On contrast, the average potentials from the Hartree-Fock theory and the long-range

corrected functional BNL-Y, which will be introduced in section 3.1 show correct long-range

behavior. The potentials have been obtained according to the procedure, suggested in ref. [9] and

the details of the calculation can be found in appendix B. The correct asymptotic decay of the

xc-potential is an important condition for the improvement of the theory [9, 14, 29, 193].

It has been found, however, that the functionals, which are one-electron self-interaction free,

in the case of many-electron systems can still exhibit failures, related to the self-interaction error

[17, 34, 131]. While the concept of one-electron self-interaction error is simple from the physical

point, it is not the best choice to understand and mathematically formalize the self-interaction
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Figure 2.2: Total energy of a carbon atom as a function of electron number N for DFT with local
PBE and long-range corrected BNL functionals and HF theory. Calculations have been performed
with NWCHEM package [195] in spin unrestricted formalism with aug-cc-pVDZ basis set. The
number of up-electrons was varied from 3 to 5, while number of down-electrons was kept equal 2.
Note, that the curves have been shifted such that E(6)= 0 for each method.

error in many-electron systems. Another approach to this problem can be made by considering

fractionally occupied systems. While such systems are not physical, their study gives deeper

insights into the delocalization problem and allows to formulate conditions for the functional

design. The main result in this respect has been provided by Perdew et al. [148]. They showed

that the ground-state energy of a statistical mixture of an N-electron pure state ΨN with an

(N +1)-electron pure state ΨN+1 with corresponding density ρ(r) = (1−ω)ρN (r)+ωρN+1(r) is

given by

E = (1−ω)EN +ωEN+1. (2.3)

Here EN and EN+1 are the ground state energies of the N and (N+1)−particle system respectively

and 0≤ω≤ 1. This mixture is then a (N +ω)-particle system. The exact ground state energy as a

function of fractional occupation is piece-wise linear. It is linear between two adjacent integer

particle numbers and exhibits jumps in the derivative at integer occupations. In Fig. 2.2 an

example calculation for a carbon atom is carried out. The total energy of a fractionally occupied

carbon atom as a function of electron number N for the local PBE functional [146], the HF theory

and the long-range corrected BNL functional [10, 116] are plotted. The curves have been shifted
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such that the energy of a neutral carbon with number of electrons N = 6 for each theory is at

0. We clearly observe the non-linear behavior for PBE and HF theories. The local DFT gives

usually good estimates to the ground state energies of systems with integer particle numbers.

However, fractionally occupied systems have too low energies and thus are favoured by the local

DFT. This is the reason for the wrong dissociation of the H+
2 ion. The energy of two infinitely

separated fractionally occupied H0.5+ atoms is lower than the energy of the H+ + H system. One

could also say, that the local DFT tends to overly delocalize the density. At the same time the HF

theory gives too high energies for fractionally occupied systems [58, 149, 205]. For the molecule

dissociation this is not so crucial, since the integer occupations are favoured. The HF shows

tendency to overly localize the density.

From the relation between the energy derivative with respect to the occupation ni of a single

particle Kohn-Sham (KS) orbital and the energy of this orbital εi

∂Etotal

∂ni
= εi, (2.4)

also known as Janak’s theorem, one can identify the highest occupied molecular orbital (HOMO)

as the chemical potential of the system [87, 150]. The negative of the HOMO eigenvalue from the

exact KS-theory equals to the ionization potential (IP) of the system. Indeed from Fig. 2.2 we see

that the slope of the energy curve at N = 6 from the left derivative is too low for the local DFT

and too high for the HF theory if compared to the assumed linear behavior (we assume that the

energies for integer particle numbers are correct). This means, that the HOMO eigenvalue from

PBE underestimates the IP and the HF in contrast overestimates it. It has been observed, that for

many cases, where the local DFT systematically underestimates a quantity, the HF overestimates

it (and vice versa). For example the bond-length alternation in the conjugated polymer chains

is overestimated by the HF theory, while the local DFT usually underestimate it (compare also

results of section 8.1 in this thesis). The long-range corrected (range-separated) functionals, like

BNL show almost linear energy dependence on fractional charge and have balanced behavior.

They usually outperform both, local DFT and HF in cases, where delocalization problem gives

rise to massive errors.

The currently accepted definition of the self-interaction free functional is the one which fulfills

the linearity condition [34]. For this reason the condition −εHOMO = IP is an important indicator

for the correction of the self-interaction error.

2.2 NOTE ON THE MEANING OF THE KOHN-SHAM EIGENVALUES

By construction the KS-eigenvalues do not have any physical meaning, with HOMO eigenvalue

being an important exception. Despite this fact the connection between the Kohn-Sham HOMO-

LUMO gap (EKS
gap = εLUMO−εHOMO) and experimental gaps has been extensively studied [86, 101,

169, 203]. Surprisingly it has been found, that the optical gap in some cases is very accurately

described by the HOMO-LUMO gap from hybrid functionals like B3LYP [101, 168, 169, 203].
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Studies on different systems, however, reveal that such findings are rather fortuitous [80, 86,

132, 172, 189]. Thus in general there is no evident correlation between the band gap and the

HOMO-LUMO gap. The interpretation is based on a misconception.

Physically there are two distinct experimentally accessible gaps. The fundamental gap is

the difference of the ionization potential (IP) and the electron affinity (EA). Experimentally it

can be determined by measuring both quantities separately using photoemission spectroscopy

(ionization potential) and inverse photoemission spectroscopy (electron affinity). Both processes

are particle addition/removal processes, thus the particle number is not conserved. Such a process

can not be described by a single ground state DFT calculation. However, it can be described by

two ground state calculations, for example one for the N- and another for the (N +1)-particle

systems. Using the Janak’s theorem, provided the functional is exact, the N-particle calculation

gives the IP and the (N +1)-particle calculation the EA. The proper fundamental gap from the

KS-theory is

Egap = IP−EA= EKS
gap +∆xc, (2.5)

where the first term is the HOMO-LUMO gap from the KS-calculation and ∆xc is the derivative

discontinuity [113]. The latter can be evaluated only from two distinct ground state calculations

with different particle numbers. For example for range-separated (long-range corrected) func-

tionals (section 2.3.2) the derivative discontinuity is equal to the difference of the HOMO for the

(N +1)-system and LUMO of the N-system [9]. For this reason a single ground state calculation

will give an exact IP but the EA from LUMO eigenvalue will be in general wrong. Nevertheless,

practical calculations show, that HOMO-LUMO gaps from nearly SIE-free functionals (e.g. range-

separated functionals, sections 2.3.2 and 2.3.3) compare very well to experimental fundamental

gaps [103].

The optical gap is defined as the difference of the lowest dipole-allowed excited state and

the ground state. It can be measured by absorption spectroscopy. In this process the number of

electrons is unchanged. It can be thought of as the creation of quasi-electron and quasi-hole. The

interaction energy of these particles (binding energy of the exciton) leads to the optical gap which

is smaller than the fundamental gap. The optical gap can be obtained in a proper way only using

the time-dependent DFT [167], which is beyond the scope of this work. The local functionals,

however, violating the linearity condition underestimate the IP and in the same way the EA

(calculated from LUMO eigenvalue). Thus statistically they can yield a good estimate of the

optical gaps as has been stated above.

Finally, we point out, that according to the Görling-Levy perturbation theory [57, 113], the

physical foundation to the occupied KS-eigenvalues can be given. The KS-eigenvalue differences,

have been shown to be the approximations to the excitation energies of the zeroth order in

electron-electron interaction. Thus it can be expected, that the single-particle eigenvalues can be

good estimates to the vertical IP’s of the system, as measured by photoemission experiments. In

fact, the references [33, 194] provide the evidence for this assumption.
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2.3 SOLUTION: HYBRID FUNCTIONALS

2.3.1 Global hybrids

Hartree-Fock theory or the exact exchange functional in the KS theory (EXX) correct the self-

interaction error, which stems from Hartree term in the exact manner. However, these functionals

do not contain the correlation. On contrast, local approximate xc-functionals employ the exchange

and correlation in a consistent way and take the advantage of mutual error cancellation of the

exchange and correlation contributions. The combination of the two theories is usually referred

to as a (global) hybrid Hartree-Fock-DFT theory or (global) hybrid xc-functionals. A fixed fraction

α of the exact exchange is mixed to the usual DFT functional

Ehybrid
xc = EDFT

xc +α(EHF
x −EDFT

x ). (2.6)

The mixing parameter α can be determined empirically [16] or using the adiabatic connection

theorem [147]. The HF exchange functional is explicitly orbital dependent. This leads to the

problem, that the KS-potential Eq. 1.14 can not be obtained by explicit differentiation of the exact

exchange with respect to the density. This problem can be solved with optimized effective potential

(OEP) approach [105, 179, 191]. This procedure gives the KS-potential which corresponds to

the orbitals, which minimize the total energy of the orbital-dependent functional. However, this

approach is computationally very costly and is rarely used in practical calculations on extended

systems.

An alternative way of employing the hybrid functionals, which is widely used in practical

calculations is the generalized Kohn-Sham (GKS) approach. Instead of mapping the interacting

system to the fully non-interacting, like in the pure Kohn-Sham approach, Seidl et. al. proposed

to map the interacting system to an interacting one, which can be still described by a single

Slater determinant (for example HF theory) [174]. This is the formal basis for the hybrid HF-DFT

methods. Practically, the calculations are performed as in HF theory with additional local DFT

potential.

The hybrid functionals correct many failures of local functionals and usually give very

accurate results for a wide range of properties. However, they do not completely remove the

self-interaction error.

2.3.2 Range-separated functionals

The asymptotic decay of the potential from the global hybrid functionals is −α/r, i.e. proportional

to the fraction of the exact exchange. To obtain the correct asymptotic decay of the potential

the functionals have been proposed, which include the exact HF exchange for the long-range

interaction and employ the local DFT exchange for the short-range interaction. This is achieved
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by partitioning of the electron-electron interaction

1
r
= ξωsr(r)

r︸ ︷︷ ︸
DFT

+ 1−ξωsr(r)
r︸ ︷︷ ︸

HF

(2.7)

by some smooth range-separation function ξωsr(r). It is usually chosen to be a complementary error

function ξωsr(r)= 1−erf(ωr) or exponential function ξωsr(r)= e−ωr. In the latter case the screened

Coulomb potential is of Yukawa type, thus we refer to it as Yukawa screening. The particular

form of the range-separation function turns out to be of minor importance for the scheme. The

long-range HF exchange then enforces the correct asymptotic decay of the xc-potential, while

the theory still benefits from mutual error cancellation of the local exchange and correlation

functionals at the short range. These functionals are called long-range corrected (LC) functionals.
1 The more general form of such functionals, also known as Coulomb-attenuating method (CAM)

functionals reads

1
r
= 1−α−β(

1−ξωsr(r)
)

r︸ ︷︷ ︸
DFT

+ α+β(
1−ξωsr(r)

)
r︸ ︷︷ ︸

HF

, (2.8)

where α is the fraction of the global exact HF exchange and α+β is the fraction of the HF

exchange for the long-range [2, 200]. The α and β parameters should satisfy the relations

0≤α+β≤ 1, 0≤α≤ 1, 0≤β≤ 1. The xc-energy of such functional can be written as

ECAM
xc = [

1− (α+β)
]
EDFT

x +αEHF
x +β(Eω,DFT

x,sr +Eω,HF
x,lr )+EDFT

c , (2.9)

where Eω,DFT
x,sr is the short-range exchange functional in LDA or GGA approximation, where the

Coulomb interaction is screened by a range-separation function and Eω,HF
x,lr is the accompanying

long-range HF exchange with descreened Coulomb interaction (1−ξωsr(r))/r. This way of mixing

the DFT and HF naturally includes different range-separated and global hybrid functionals

as limiting cases [2, 53, 54, 163, 198, 200]. The long-range corrected functional is for example

obtained for β= 1,α= 0, while a global hybrid is obtained for α 6= 0,β= 0.

The parameters in the CAM functionals are essentially determined in an empirical way. As

in the case of global hybrids, usual procedure in obtaining the parameters for such functionals

is the fit of a standard benchmark set of molecules to experimental thermochemical data. The

parameters α,β,ω, obtained in this way are then used for all systems.

The range-separated functionals have been shown to fulfill the linearity condition to a great

extent [99]. They generally improve over the local and global hybrid functionals in description

of response properties [70, 90, 176], photoemission spectra [99, 161], bond length alternation in

conjugated polymers [100] to name some examples.

1Note also, that terms range-separated and long-range corrected are often used as synonyms.
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2.3.3 Adiabatic connection functional

The range-separated functionals and the long-range corrected functionals as their special case

have been so far introduced on rather empirical grounds. However, they can be directly derived

using adiabatic connection theorem. Assume there exists a one-parameter smooth representation

of an electron-electron interaction V̂ → V̂ω, a ≤ω≤ b such that V̂ a = 0 and V̂ b = V̂ . The universal

functional for the system with such interaction reads

Fω[ρ]= min
Ψω→ρ

〈Ψω| T̂ + V̂ω |Ψω〉 . (2.10)

Then by construction Fa = T0 and Fb = F and the xc-functional can be written as

Exc[ρ]=
∫ b

a

dFω′

dω′ dω′−EH[ρ]. (2.11)

This is known as adiabatic connection theorem [60, 107, 201]. It can be used to derive a long-range

corrected functional. Assume the following parametrization of the electron-electron interaction

V̂ω = 1
2
∑N

i 6= j
(
1−exp(−ω|ri −r j|

) |ri −r j|−1. The conditions above are fulfilled for a = 0, b →∞ and

the exchange-correlation energy yields

Exc[ρ]=
∫ ∞

0

dFω′

dω′ dω′−EH[ρ]=
∫ ∞

0
〈Ψω′ |dV̂ω′

dω′ |Ψω′〉dω′−EH[ρ]. (2.12)

This kind of adiabatic connection along with the practical approximations, which we present

below has been suggested by Baer and Neuhauser [10]. To approximately evaluate the adiabatic

connection integral they proceed as follows. Given the value of parameter ω, the wave function

in Eq. 2.12 for the case ω′ <ω is assumed to be the Slater determinant Φ and for ω′ >ω the full

interacting wave function Ψ

∫ ∞

0
〈Ψω′ | dV̂ω′

dω′ |Ψω′〉dω′ ≈
∫ ω

0
〈Φ| dV̂ω′

dω′ |Φ〉dω′+
∫ ∞

ω
〈Ψ| dV̂ω′

dω′ |Ψ〉dω′

= 〈Φ|V̂ω |Φ〉+〈Ψ|V̂ − V̂ω |Ψ〉

= 1
2

∫
1− e−ω|r−r′|

|r−r′| ρ(r)ρ(r′) drdr′︸ ︷︷ ︸
Eω

H [ρ]

−1
2

∫
1− e−ω|r−r′|

|r−r′| ρ2(r,r′) drdr′︸ ︷︷ ︸
Eω,HF

x,lr [ρ]

+〈Ψ|V̂ − V̂ω |Ψ〉 , (2.13)

where ρ(r,r′) is the first-order reduced density matrix. The integral is evaluated as

∫ b

a
〈Ψ| dV̂ω′

dω′ |Ψ〉dω′ = 〈Ψ|
∫ b

a

dV̂ω′

dω′ dω′ |Ψ〉 = 〈Ψ| 1
2

N∑
i 6= j

(
− e−ω|ri−r j |

|ri −r j|
)∣∣∣∣b

a
|Ψ〉 . (2.14)

The Slater determinant Φ, applied to the descreened interaction operator gives the long-range

Hartree term Eω
H and the long-range Fock term Eω,HF

x,lr . With this the Baer-Neuhauser (BN)
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exchange-correlation functional can be written as

EBN
xc [ρ]= Eω,HF

x,lr [ρ]+〈Ψ|V̂ − V̂ω |Ψ〉−EH[ρ]+Eω
H[ρ]

= Eω,HF
x,lr [ρ]+

[
〈Ψ|V̂ − V̂ω |Ψ〉− 1

2

∫
e−ω|r−r′|

|r−r′| ρ(r)ρ(r′) d3rd3r′
]

︸ ︷︷ ︸
Eω

xc

. (2.15)

The long-range HF exchange Eω,HF
x,lr is non-local and accompanies the Hartree term in the total

energy expression Eq. 1.11 at large separations, correcting the potential asymptotically. The

screened part is further approximated as a local DFT functional

Eω
xc[ρ]≈

∫
εωxc[ρ](r)ρ(r)dr, (2.16)

where the xc-energy per particle εωxc can be evaluated within the LDA or GGA approximation

derived for the screened Coulomb interaction [53, 67, 81, 110, 171]. We outline a possible way of

doing this in section 3.1. To sum up, the full energy functional reads

E[ρ]= T0[ρ]+
∫

vextρ+EH[ρ]+Eω,HF
x,lr [ρ]+Eω

xc[ρ]. (2.17)

Note, that for ω= 0 the scheme reduces to the usual Kohn-Sham approach.

We consider now the difference of the functional EBN
xc and the exact Kohn-Sham xc-functional

∆Exc =
[
T +〈Ψ|V̂ |Ψ〉−Ts −EH

]− [〈Φ|V̂ω|Φ〉−〈Ψ|V̂ω|Ψ〉+〈Ψ|V̂ |Ψ〉−EH[ρ]
]

(2.18)

= [
T +〈Ψ|V̂ω|Ψ〉]− [

Ts +〈Φ|V̂ω|Φ〉] . (2.19)

For ω→ 0, ∆Exc = T −T0 ≥ 0. This can be seen from variational principle. For a given density

ρ the Slater determinant Φ, which yields this density minimizes the functional T0 = 〈Φ|T̂|Φ〉.
The interacting wave function, which yields the same density minimizes the functional E =
〈Ψ|T̂ + V̂ |Ψ〉, thus T0 = 〈Φ|T̂|Φ〉 ≤ 〈Ψ|T̂|Ψ〉 = T. For the case ω → ∞, ∆Exc = T + 〈Ψ|V̂ |Ψ〉 −(
Ts +〈Φ|V̂ |Φ〉)= E−EHF = Ec < 0. Note, that the correlation energy Ec is defined as the difference

of the exact energy and the Hartree-Fock energy. Assuming the continuity one concludes that

there is an ω with 0≤ω≤∞ such that ∆Exc = 0 and the BN-functional is exact [10].

2.4 MATRIX EQUATIONS

In this section we derive the matrix equations, which can be directly used for the implementation

of a long-range corrected DFT and approximations to it. The energy expression Eq. 2.17 defines

the long-range corrected functional. The density is represented by a Slater-determinant with

spin-orbitals ψi, such that ρ =∑
i ni|ψi|2, where ni are the occupations of the spin-orbitals. Thus
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the energy can be rewritten in terms of the spin-orbitals

E =
N∑
i

ni

∫
ψi(x)

(
−1

2
∇2

)
ψi(x)dx+

N∑
i

ni

∫
|ψ(x)|2vext(r)dx+Eω

xc[ρ]

+
N∑
i j

nin j

2

∫
ψi(x)ψi(x)ψ j(x′)ψ j(x′)

|r−r′| dxdx′

−
N∑
i j

nin j

2

∫
ψi(x)ψ j(x)

1− e−ω|r−r′|

|r−r′| ψi(x′)ψ j(x′)dxdx′+ENN , (2.20)

where ENN is the nuclei-nuclei repulsion energy, which is constant for a given geometry. As in

the usual KS-approach the variation is performed with respect to the orbitals. For the numerical

treatment of the problem on a computer the discretization has to be done. The direct way of

discretization in the real space on a grid (or set of grids) leads to a class of grid-based numerical

methods (for example [102]). Another way is usually referred to as Roothaan-Hall method, where

the discretization is performed with respect to an auxiliary basis set [62, 164–166]. Although

this method has been initially developed for the Hartree-Fock theory, it is widely used in the

implementations of the Kohn-Sham method and the hybrid Hartree-Fock-DFT approaches, since

the mathematical procedure in all cases is essentially the same. Each spin orbital is represented

by a linear combination of some appropriate finite set of functions {φµ}, which constitute a basis

ψi(x)=∑
µ

cµiφµ(r)σi(ω), (2.21)

where σi(ω) is the spin part. Inserting this definition in the energy expression Eq. 2.20 and

integrating out the spin degrees of freedom
∫
σi(ω)σ j(ω)dω= δσiσ j we obtain

E =∑
µν

N∑
i

ni cµi cνi

∫
φµ(r)

(
−1

2
∇2 +vext(r)

)
φν(r)dr+Eω

xc[ρ]+ENN

+ 1
2

∑
µνκλ

(µν|κλ)
N∑
i

ni cµi cνi

N∑
j

n j cκ j cλ j − 1
2

∑
µνκλ

(µν|κλ)lr
N∑
i j

nin jδσiσ j cµi cκi cν j cλ j

=∑
µν

Ptotal
µν hµν+Eω

xc[ρ]+ 1
2

∑
µνκλ

Ptotal
µν Ptotal

κλ (µν|κλ)

− 1
2

∑
µνκλ

(
Pα
µκPα

νλ+Pβ
µκPβ

νλ

)
(µν|κλ)lr +ENN . (2.22)

Here following one- and two-electron integrals (matrix elements) appear

hµν =
∫
φµ(r)

(
−1

2
∇2 +vext(r)

)
φν(r)dr (2.23)

(µν|κλ)=
∫
φµ(r)φν(r)φκ(r′)φλ(r′)

|r−r′| drdr′ (2.24)

(µν|κλ)lr =
∫
φµ(r)φν(r)

1− e−ω|r−r′|

|r−r′| φκ(r′)φλ(r′)drdr′. (2.25)
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We assume, that the orbitals with 1≤ i ≤ Nα are spin-up or α−electrons and the rest Nα < i ≤ N

are the spin-down or β−electrons, where Nα is the number of alpha electrons. The spin density

matrix for α−electrons is defined as Pα
µν =

Nα∑
i

ni cµi cνi. For β−electrons the expression reads

Pβ
µν =

N∑
i=Nα+1

ni cµi cνi. The total density matrix is the sum of spin-up and spin-down density

matrices Ptotal = Pα+Pβ. For the closed shell case Nα = Nβ = N/2 and P = Ptotal = 2Pα. In this

case the equations read

E =∑
µν

Pµνhµν+ 1
2

∑
µν

∑
αβ

PµνPαβ(µν|αβ)− 1
4

∑
µν

∑
αβ

PµνPαβ(µα|βν)lr +Eω
xc[ρ]+ENN . (2.26)

The variation of the energy with respect to the molecular orbital coefficients cµi subject to the

condition
∫
ψi(r)ψ j(r)dr= δi j yields the matrix equations∑

µν

Hµνcνi = εi
∑
µν

Sµνcνi, (2.27)

where εi are the eigenvalues, Sµν =
∫
φµ(r)φν(r)dr is the overlap of the basis functions and the

Hamiltonian reads

Hµν = hµν+vxc
µν[ρ]+∑

αβ

Pαβ(µν|αβ)− 1
2

∑
αβ

Pαβ(µα|βν)lr, (2.28)

where vxc
µν[ρ] = ∫

φµ(r)vωxc[ρ](r)φν(r)dr is the representation of the xc-potential in this basis.

The xc-functional, which is non-linear in density is usually evaluated numerically on a set of

atom-centered grids. Other matrix elements for the given geometry can be precomputed.
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3
LC-DFTB: THE APPROXIMATE LC-DFT

The delocalization problem, which is typical for the local DFT arises also in the density

functional-based tight-binding method (DFTB), which we briefly introduced in section 1.3.

The proposal to extend the DFTB method to the case of hybrid exchange-correlation functionals

with special emphasis on the long-range corrected functionals (section 2.3.2) has been done by

Niehaus and Della Sala [137]. Their paper covers the basic formalism of the new scheme. In this

chapter we present the practical implementation of the DFTB method, based on a long-range

corrected xc-functional. We denote this method as the long-range corrected density functional-

based tight-binding method (LC-DFTB). First we briefly motivate the choice of the particular

exchange-correlation functional and provide it’s definition and implementation details in section

3.1. The approximations and the resulting expressions for the total energy and Hamiltonian for

single point calculations are presented in sections 3.2 to 3.8. In section 3.9 the efficiency of the

run-time algorithms is addressed. Finally, we cover the evaluation of energy gradients (forces) for

the new scheme in section 3.10.

3.1 CHOICE OF THE XC-FUNCTIONAL

The main conclusion from the work of ref. [137] is that DFTB approximations can formally be

applied to a general range-separated hybrid DFT. It is undoubtedly tempting to include the variety

of functionals into the DFTB method. However, one should keep in mind, that the main advantage

of the DFTB is it’s computational efficiency. It relies on the extensive use of precomputed and

optimized parameter sets, which simplify significantly the computational procedure, as compared

to the full ab initio approach. On the one hand it is desirable to keep the number of parameter
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sets manageable and on the other their generation and optimization can be very time consuming1.

Thus we keep the method as simple as possible and use the long-range corrected scheme, which

has been derived using adiabatic connection in section 2.3.3. In this method the range-separation

parameter ω is a free parameter and for each value of ω a separate parameter set for the DFTB

has to be generated. The long-range corrected hybrid exchange-correlation functional takes the

form

Exc = Eω
xc +Eω,HF

x,lr , (3.1)

where Eω,HF
x,lr is the long-range Hartree-Fock exchange term (compare Eq. 2.13) and the choice of

the screened local DFT part Eω
xc of the functional is discussed in following.

3.1.1 Correlation functional

As has been already stated in section 2.3.3 the long-range corrected functional can be derived from

the adiabatic connection theorem by imposing additional approximations. The last ingredient

for the practical implementation of the theory, the screened local DFT exchange-correlation

functional, has to be further approximated. Usual path is to use some combination of LDA or

GGA exchange functional, derived for the case of screened Yukawa (or error-function-based)

interaction and standard LDA or GGA correlation functional. Although there are quantitative

differences in the benchmark tests for different choices of local DFT exchange-correlation part,

the qualitative improvement over the LDA/GGA and global hybrid functionals is always observed.

Since the main aim of this work is a proof of concept, we consider the particular choice of the

DFT functional to be of minor importance.

We thus decide to use a variant of the BNL functional, based on the aforementioned work

by Neuhauser and Baer (section 2.3.3) and further developed by Livshits and Baer [116]. For

efficiency reasons in that work they switched to the error-function-based range separation, since

the functional was implemented in the code, based on the Gaussian-type orbitals (GTO). On

contrast, we still use the Yukawa-type range separation as in the original work of Neuhauser and

Baer. 2 For Eω
xc Livshits and Baer suggested to combine a standard GGA correlation functional

with a short-range LDA exchange, according to

Eω
xc = EGGA

c +ηEω,LDA
x,sr , (3.2)

where the parameter 0≤ η≤ 1 is determined empirically. Both parameters ω and η are obtained by

minimization of error for some molecule benchmark set with respect to thermochemical data. In

the same way more general CAM functionals are fine-tuned, as has been already outlined. We do

1 In last time in the DFTB community the automatic parameter optimization tools get developed [21]. However, at
present time they are not generally available and their use requires some routine.

2This choice is mainly due to the lack of a proper integration routine for the efficient evaluation of electron
repulsion integrals with error-function-based screened interaction over Slater-type basis functions, see also section
4.2.
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not attempt any fine-tuning of this functional for the method, presented in this thesis. We decide

to use the PBE [146] correlation functional, which is used in traditional DFTB parametrization

and choose η= 1 in Eq. 3.2.

In general, different local xc-functionals can be obtained for example from the LIBXC library

[124]. However, since the library was designed for GTO-based packages, it still does not contain

the Yukawa-screened exchange functionals. For this reason we modify the existent routine for the

evaluation of the LDA exchange as described in the following section. The standard correlation

functional (PBE) is obtained from the LIBXC library.

3.1.2 Short-range exchange functional

We decide to use the simplest short-range exchange functional. We rederive the formula for

the exchange energy of the uniform electron gas with Yukawa interaction. The exact first-order

spinless density matrix of a uniform electron gas reads

ρ(r1,r2)= 3ρ(r)
(

sin(t)− tcos(t)
t3

)
, (3.3)

where kF = (3π2ρ)1/3, r= 1
2 (r1 +r2), t = skF , s = |r1 −r2|. The exchange energy is obtained from

Eω,LDA
x,sr [ρ]=−1

4

∫
ρ2(r, s)

exp(−ωs)
s

drds=−π
∫
ρ2(r, s)sexp(−ωs)dsdr

=−9π
4

∫
ρ2(r)
k2

F (r)

[∫ ∞

0

4(sin t− tcos t)2

t5 exp(−αt)dt
]

︸ ︷︷ ︸
P(α)

dr

=−3
4

(
3
π

)1/3 ∫
ρ4/3(r)P(α)dr, (3.4)

where we define the quantity α=ω/kF (r). The factor P(α) reads [2, 162]

P(α)= 1− 4
3
α

[
atan

2
α
+ α

8
− α

8

(
α2

4
+3

)
ln

(
1+ 4

α2

)]
. (3.5)

We note, that for the limit ω→ 0, α→ 0 and P(α) = 1, which gives the result for the standard

Slater exchange. The extension to the short-range version of the given LDA functional is thus

performed by multiplication of the exchange energy per particle by the screening factor P(α).

The direct numerical implementation of the factor P(α) according to the formula Eq. 3.5

shows instabilities for large α (small densities). In Fig. 3.1 the absolute value of the screening

factor P(α) is plotted for the wide range of values α. The circles denote the direct evaluation from

the Eq. 3.5, and the sign of the screening factor is encoded by blue (positive) and red (negative)

color. We observe large fluctuations of the screening factor for α > 200. This can be corrected,

using Taylor expansion of P(1/α) around zero, from which we obtain for large α

P(α)≈ 4
9

1
α2 − 8

15
1
α4 +O (

1
α6 ). (3.6)
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Figure 3.1: The numerical instability in the Yukawa screening factor P(α). The absolute value
of the function P(α) evaluated directly using Eq. 3.5 is plotted with circles, where the sign is
coded by blue (positive) and red (negative) color. The numerical instability occurs for α> 200. The
selective algorithm (see main text) uses the Taylor expansion Eq. 3.6 for values α> 200, which
solves the problem (green triangles).

Within a selective algorithm, this formula is then applied for values α> 200 and for α≤ 200 the

direct formula Eq. 3.5 is used. The triangles in Fig. 3.1 show the result for selective algorithm,

which clearly corrects the numerical instability. At this point we mention, that the same problem

(and solution) have been reported in supplementary material of ref. [177].

We now perform the functional derivative of the exchange energy Eq. 3.4 and obtain the

expression for the short-range exchange potential with Yukawa-type range separation

δEω,LDA
x,sr

δρ
=−

(
3
π

)1/3
ρ1/3(r)P(α)+ ω

4π
dP
dα

. (3.7)

We call the functional, defined in this section BNL-Y functional to distinguish it from the original

BNL functional.

3.2 SECOND-ORDER ENERGY EXPANSION

In following we will derive the total energy and Hamiltonian for the LC-DFTB method by applying

approximations, known from the standard DFTB method to the total energy of the first-principles

LC-DFT. This essentially parallels the derivation in ref. [137].
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Given a local DFT exchange-correlation functional Eω
xc (for example one, defined in section

3.1 ), the energy of a LC-DFT theory in the given finite basis reads (Eq. 2.26)

E =∑
µν

Pµνhµν+ 1
2

∑
µν

∑
αβ

PµνPαβ(µν|αβ)− 1
4

∑
µν

∑
αβ

PµνPαβ(µα|βν)lr +Eω
xc[ρ]+ENN . (3.8)

The first approximation is the linearization of the local part of the exchange-correlation potential,

which is done by expansion of the exchange-correlation energy functional around some reference

density matrix ρ0 up to the second order in the difference density matrix δρ = ρ−ρ0

Eω
xc[ρ0 +δρ]= Eω

xc[ρ0]+
∫
δEω

xc

δρ(r)

∣∣∣∣
ρ0

δρ(r)dr+ 1
2

∫
δ2Eω

xc

δρ(r)δρ(r′)

∣∣∣∣
ρ0

δρ(r)δρ(r′)drdr′+O (δρ3)

= Eω
xc[ρ0]+

∫
vωxc[ρ](r)δρ(r)dr+ 1

2

∫
f ωxc[ρ](r,r′)δρ(r)δρ(r′)drdr′+O (δρ3). (3.9)

This expansion is expected to be an appropriate approximation to the exchange-correlation energy

for the density matrices ρ which are close to the reference density matrix. We note, that the

non-local long-range Hartree-Fock exchange potential and the Hartree potential are already

linear in density matrix. For convenience and more clarity we rewrite the expansion Eq. 3.9 in

terms of the finite auxiliary basis

Eω
xc[ρ]= Eω

xc[ρ0]+∑
µν

∆Pµν

∫
vωxc[ρ0](r)φµ(r)φν(r)dr

+ 1
2

∑
µναβ

∆Pµν∆Pαβ

∫
f ωxc[ρ0](r,r′)φµ(r)φν(r)φα(r′)φβ(r′)drdr′+O (∆P3)

= Eω
xc[ρ0]+∑

µν

∆Pµνvxc
µν+

1
2

∑
µναβ

∆Pµν∆Pαβ f xc
µναβ+O (∆P3), (3.10)

where the difference density matrix in the finite basis representation is denoted by ∆Pµν =
Pµν−P0

µν and the first and second functional derivatives of the xc-functional are denoted by vxc
µν

and f xc
µναβ

. The goal is now to factor out the Hamiltonian H0, which depends only on the reference

density matrix. We follow the procedure in [42] for standard DFTB and rearrange the terms in

the total energy expression Eq. 3.8

E =∑
µν

Pµν

[
hµν+vxc

µν[P0]+∑
αβ

P0
αβ(µν|αβ)− 1

2

∑
αβ

P0
αβ(µα|βν)lr

]
−∑
µν

Pµνvxc
µν[P0]

+ ∑
µναβ

Pµν∆Pαβ(µν|αβ)− 1
2

∑
µναβ

Pµν∆Pαβ(µα|βν)lr − 1
2

∑
µναβ

PµνPαβ(µν|αβ)

+ 1
4

∑
µναβ

PµνPαβ(µν|αβ)lr +Eω
xc[ρ]+ENN . (3.11)

Here we inserted (added and subtracted) the exchange-correlation potential vωxc[ρ0], evaluated at

the reference density matrix P0
µν. The zeroth-order Hamiltonian is the expression in the square

brackets in the first line of Eq. 3.11

H0
νµ = hµν+vxc

µν[ρ0]+∑
αβ

P0
αβ(µν|αβ)− 1

2

∑
αβ

P0
αβ(µα|βν)lr. (3.12)
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We proceed further by inserting the expansion of the xc-functional Eq. 3.10 and after some term

rearrangement we arrive at the energy expression

E =∑
µν

PµνH0
µν+

1
2

∑
µναβ

∆Pµν∆Pαβ

[
(µν|αβ)+ f xc

µναβ

]
− 1

4

∑
µναβ

∆Pµν∆Pαβ(µα|βν)lr

+Eω
xc,sr[ρ0]−∑

µν

P0
µνvxc

µν[P0]− 1
2

∑
µναβ

P0
µνP0

αβ(µν|αβ)+ 1
4

∑
µναβ

P0
µνP0

αβ(µα|βν)lr +ENN︸ ︷︷ ︸
Erep

. (3.13)

The second line in the Eq. 3.13 depends only on the reference density matrix and is referred to

as the DFTB repulsive energy Erep. In standard DFTB this contribution to the total energy is

approximated by a sum of fast decaying pair potentials, which depend only on the atom pair and

distance between them

Erep ≈
∑
AB

VAB(|RAB|). (3.14)

In the present method one can use the same assumption as has been already discussed in ref.

[137]. For the electronic structure calculations at fixed geometry this term is of no importance.

This covers for example the eigenvalue spectrum, the single-particle orbitals and response

properties without geometry relaxation. The parametrization of the repulsive potential for the

new method for the species carbon and hydrogen is presented in chapter 5.

3.3 TWO-CENTER APPROXIMATION AND THE ZEROTH-ORDER LC-DFTB

The energy expression in Eq. 3.13 has been derived by the expansion of the total energy of

the LC-DFT around a reference density matrix ρ0. If we assume, that it is a sufficiently good

approximation to the ground state density matrix and neglect the terms, which depend on ∆Pµν

we obtain the energy of the LC-DFTB scheme in zeroth order, in analogy to the standard DFTB

E =∑
µν

PµνH0
µν+Erep. (3.15)

The variation with respect to the molecular orbital coefficients cµi results in the generalized

eigenvalue problem

∑
µ

H0
νµcµi = εi

∑
µ

Sνµcµi (3.16)

with zeroth-order Hamiltonian, given by equation 3.12. This problem is solved by one diagonal-

ization. So obtained coefficients cµi constitute the density matrix Pµν and the energy Eq. 3.15 can

be evaluated. So far this calculation would correspond to a first diagonalization in the ab initio

procedure for some initial density guess, which is the reference density matrix ρ0. The standard

DFTB method uses the superposition of atomic densities as an initial guess ρ0 =
atoms∑

A
ρA. The
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reference density matrix in the atomic basis yields then Pµν = δµνnµ, where nµ is the occupation

of the atomic orbital φµ. This initial density guess is often used as default in ab initio quantum

chemistry packages. For the LC-DFTB method we use the same reference density.

The zeroth-order Hamiltonian within the (LC-)DFTB method is evaluated in two-center

approximation. Assume without loss of generality µ ∈ A (read orbital µ is on atom A) and ν ∈ B.

Then for the off-site matrix elements A 6= B the zeroth-order Hamiltonian yields

H0
νµ = hµν+vxc

µν

[
atoms∑

A
ρA

]
+∑

α

nα(µν|αα)− 1
2

∑
α

nα(µα|αν)lr

= hµν+vxc
µν

[
ρA +ρB +

atoms∑
C 6={A,B}

ρC

]
+ ∑
α∈{A,B}

nα(µν|αα)− 1
2

∑
α∈{A,B}

nα(µα|αν)lr

+ ∑
C 6={A,B}

∑
α∈C

nα(µν|αα)− 1
2

∑
C 6={A,B}

∑
α∈C

nα(µα|αν)lr (3.17)

≈ hµν+vxc
µν

[
ρA +ρB

]+ ∑
α∈{A,B}

nα(µν|αα)− 1
2

∑
α∈{A,B}

nα(µα|αν)lr, (3.18)

where the three-center terms have been neglected. This expression is exact for a dimer. For the

on-site case A = B, the Hamiltonian is approximated as H0
µν ≈ εfree atom

µ δµν. Thus the prescription

for the LC-DFTB zeroth-order Hamiltonian is

H0
µν[ρ0]≈


εfree atom
µ ν=µ

H0
µν[ρA +ρB] µ ∈ A, ν ∈ B

0 else.

(3.19)

In this way the approximate Hamiltonian can be constructed from a small set of precomputed

matrix elements using the Slater-Koster rules [183]. If only s,p and d-orbitals are involved in

the calculation, which is the case for the (LC-)DFTB method, only 10 Slater-Koster integrals

as a function of the interatomic distance for each pair of involved atomic species are needed to

construct an arbitrary molecular Hamiltonian.

3.4 BASIS SET

Up to now we did not mention how to choose the auxiliary basis set {φµ}. In the current approach

the total energy, the Hamiltonian and Kohn-Sham molecular orbitals are represented in terms of

finite auxiliary basis. The finiteness of the basis leads in general to an approximate representation

of the Kohn-Sham orbitals and for this reason the densities, obtained in this way will be not

the exact ground state densities. On the other hand the size of the basis defines the size of the

matrices involved in the generalized eigenvalue problem Eq. 3.16 and thus the computational

effort grows if approaching the basis set limit. Therefore it is a common practice to find an

optimum with respect to the basis size and accuracy in the representation of the wave function.
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3.4.1 Minimal pseudo-atomic basis set (MPA set)

A meaningful atom-centered basis set should consist of at least one radial function per atomic

shell. Such a choice of basis is called minimal. For example in the case of carbon, the minimal

set consists of 1s, 2s, 2p radial functions. Thus the overall number of basis functions is five (2p

orbital is three-fold degenerate).

We obtain basis functions from the KS-orbitals of an atomic (LC-)DFT problem with additional

confinement potential (we denote r = |r|)

V conf(r)=
(

r
r0

)2
, (3.20)

where the compression radius r0 is usually proportional to the covalent radius of the respective

atom. The compression radius is the optimization parameter of the basis set. The atoms are forced

to be spherically symmetric. The electrons of the highest occupied shell are equally distributed

over the symmetry states of that shell. For example the carbon atom has the occupation of 1/3

electrons in each spin orbital of the p-shell. The optimal choice of the compression radius can be

obtained by a fit to some reference band structures [42]. We use the values of compression radii,

which were obtained for the standard DFTB parametrization (the values labeled rbasis
0 in Tab.

3.1), and call the minimal pseudo-atomic basis for this choice of the compression radii the MPA

basis or DFTB basis.

We want now to assess the quality of the minimal basis, obtained in such a way, compared to

standard Gaussian-type orbital (GTO) basis sets. We demonstrate the total energy for dimers

N2, C2, O2 and CO as a function of interatomic distance as obtained from an all-electron LDA-

DFT calculation with different basis sets in Fig. 3.2. The calculations with MPA set have been

performed using the two-center all-electron (LC-)DFT code, developed by author for testing

purposes. The code is based on the numerical integration routines, described in chapter 4. The

calculations with the GTO basis set have been performed with NWCHEM package [195]. The

MPA basis is compared to the minimal GTO basis (STO-3G), small double zeta GTO basis (3-21G)

and large double zeta GTO basis (cc-pVDZ). Inspection of the figure Fig. 3.2 shows, that the

minimal DFTB basis gives total energies which are better than that of the 3-21G basis set.

Remarkable is the fact, that the minimal GTO basis (STO-3G) gives the energies, which are

approximately 1 Hartree too high, compared to the minimal DFTB basis. We conclude, that

although the DFTB basis set is a minimal one, it is comparable to small GTO double zeta basis.

This finding will be reconfirmed also for the entire LC-DFTB method later on, despite the fact,

that it employs further approximations. There are, however, cases where the minimal basis set

is not sufficient. For sulfur [139] and phosphorus the extension of minimal basis set to include

the polarization functions is necessary in order to correctly describe the hypervalent molecules

(for example sulfur hexafluoride or phosphorus pentachloride). We note also, that to our best

knowledge up to now there were no implementations of DFTB method with double zeta basis.
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Figure 3.2: The total energy of N2, C2, O2 and CO molecules as a function of interatomic
distance R from all-electron LDA-DFT with different basis sets. The minimal DFTB basis
performs comparable or better than the small double zeta basis (3-21G) for the dimers.

3.4.2 Basis for LC-DFTB

In the standard DFTB method the pseudo-atomic basis set, described in the previous section is

further truncated and contains only the valence orbitals. For example carbon atom would contain

only 2s and 2p orbitals. This is based on the assumption, that the contribution to the electronic

structure due to the core electrons can be neglected.

As has been already stated, the zeroth-order Hamiltonian is evaluated according to the

prescription Eq. 3.19. Usually the density matrix, which enters the off-site Hamiltonian is

evaluated using the pseudo-atomic basis with weaker compression. It has been found that this

generally improves the description of electronic structure. Thus the zeroth-order Hamiltonian

and overlap matrix elements are optimized with respect to both the basis compression radius

rbasis
0 and the density compression radius rdensity

0 . For the LC-DFTB we use the same compression

radii for all values of the range-separation parameter ω. We rely on the values, optimized for the

standard DFTB [42, 139]. This choice is motivated by the requirement, that the method should

approach the standard DFTB solution in the limit ω→ 0 on the one hand. On the other hand, the

reoptimization of the compression radii for each value of ω would overparametrize the method.

The compression radii used in the calculations for this thesis are summarized in Tab. 3.1.
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rbasis
0 [a0] rdensity

0 [a0]
Species

s p d s p d

H 3.0 2.5
C 2.7 2.7 14.0 14.0
N 2.7 2.7 14.0 14.0
O 2.3 2.3 9.0 9.0
S 3.8 3.8 4.4 9.0 9.0 9.0

Table 3.1: The compression radii [a0] for the basis and density compression for the elements
H,C,N,O,S, used in this thesis. These are the values of the standard DFTB parametrization,
referred to as mio-1-1 parameter set.

3.5 EXTENSION OF PARAMETRIZATION TOOLS AND COMPUTATIONAL PERFORMANCE

The parametrization of the zeroth-order LC-DFTB requires the extension of the atomic DFT code

and of the two-center code, which are part of the DFTB parametrization toolkit, to include the

long-range corrected functional. For both, the local short-range xc-functional is implemented

according to the description in section 3.1. The methods for the evaluation of the long-range

HF exchange integrals are outlined in section 4.4 (two-center code) and section 4.3 (atomic

DFT code). The modified atomic DFT code provides the pseudo-atomic eigenvalues εfree atom
µ , the

basis {φµ(r)} and the density matrix ρA(r,r′). The two-center code evaluates then the off-site

Hamiltonian H0
µν, µ ∈ A,ν ∈ B, A 6= B and the overlap integrals Sµν for the given pseudo-atomic

basis and pseudo-atomic density matrix. The parameters are then tabulated in the Slater-Koster

files as a function of interatomic distance. We note, that for the zeroth-order LC-DFTB the only

changes are due to the zeroth-order Hamiltonian and overlap matrix elements. For this reason

the computational efficiency of the zeroth-order LC-DFTB (LC-DFTB-0) is the same as that of

standard DFTB.

3.6 EIGENVALUES FROM THE ZEROTH-ORDER LC-DFTB

In order to test the performance of the new parametrization we calculate the eigenvalues of small

closed-shell molecules benzene, ethylene, C2 and N2 as a function of range-separation parameter

ω. We compare the results to the all-electron first principles LC-DFT with BNL functional. The

BNL eigenvalues have been calculated using the minimal basis (STO-3G) and the large double

zeta basis (cc-pVDZ) with NWCHEM package. The molecular geometries have been optimized

on the standard DFTB level. The HOMO and LUMO eigenvalues for zeroth-order LC-DFTB

(LC-DFTB-0), the BNL/STO-3G and BNL/cc-pVDZ are depicted in Fig. 3.3. Additionally, we plot

the results from the self-consistent LC-DFTB (red dashed lines), which will be introduced later.

We recognize that the LC-DFTB-0 theory does not provide the necessary qualitative effect of

pushing down the HOMO eigenvalue and opening the HOMO-LUMO gap if the range-separation
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Figure 3.3: The HOMO and LUMO of benzene, ethylene, C2 and N2 molecules, calculated with
LC-DFTB-0 theory and full ab initio BNL/STO-3G and BNL/cc-pVDZ theories. The HOMO
eigenvalue of the LC-DFTB-0 is not properly pushed down in energy as the range-separation
parameter ω is increased. The result for self-consistent LC-DFTB, which is introduced in following
sections is included for comparison.

parameter is increased as it is the case for the first-principles methods. Although the gap gets

larger, the effect is rather small, compared to the first-principles reference. The same is true for

the HOMO eigenvalue. As has been discussed in chapter 2 the HOMO eigenvalue for the exact

functional equals up to a sign to the ionization potential. Since it is usually underestimated by

the local DFT (limit ω→ 0 in this case) the drop of the HOMO eigenvalue is the signature of

the self-interaction error correction, which is not observed for LC-DFTB-0. Contrary to this the

DFTB limit ω→ 0 gives gaps and positions of HOMO and LUMO levels, which compare better to

the corresponding ab initio theory (this is in fact no surprise, since the standard DFTB has been

optimized to do this).

The problem of insufficient description of the eigenvalues for the typical values of the range-

separation parameter 0.1a−1
0 <ω< 1.0a−1

0 and in the HF+c limit (ω→∞) does not seem to be the

basis set effect, since the minimal STO-3G basis shows the proper gap opening and lowering of

the HOMO eigenvalue. The two-center approximation can not explain the problem either, since

even for the case of dimers N2,C2 this problem occurs. We conclude, that the reason should be

the non-self-consistent evaluation of the eigenvalues within the LC-DFTB-0 method.

The LC-DFTB-0 method performs only one diagonalization. For this reason, our aim is to
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perform only one diagonalization for a reference all-electron ab initio method. The NWCHEM

[195] code, which we extensively use, supports the superposition of atomic densities guess.

However, for the efficiency reasons, it diagonalizes the initial Hamiltonian on the restricted

Hartree-Fock (RHF) level of theory and uses the resulting density matrix as the input for the first

LC-DFT self-consistent field (SCF) cycle. Thus performing only one SCF iteration with NWCHEM

gives in fact the second SCF iteration (RHF -> 1. DFT iteration). For this reason we can not use

the NWCHEM for the verification of our conjecture without patching it.

Instead, we use the aforementioned two-center all-electron code, which is based on the

numerical basis sets. It is thus independent on the type of the basis and can use the MPA basis

and GTO basis sets. We calculate the HOMO and LUMO of N2 dimer within the all-electron

BNL/STO-3G theory using the superposition of atomic densities guess as a function of range-

separation parameter ω. We calculate the eigenvalues from one diagonalization with and without

preceding RHF diagonalization. The eigenvalues from the full SCF procedure are given as well.

The results are presented in Fig. 3.4. In the case of one diagonalization (no RHF) we observe

the same qualitative behavior as in the case of LC-DFTB-0 theory. The deviation between the

eigenvalues from the full SCF calculation and the ones from one diagonalization (no RHF)

gets larger if range-separation parameter ω is increased. On contrast the eigenvalues from one
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diagonalization with preceding RHF diagonalization are very close to that from full SCF at least

for dimer. If the first diagonalization is carried out within the RHF theory, then the resulting

density matrix is not anymore diagonal in atomic basis. It gives then a better initial guess for a

Hamiltonian, which contains the HF exchange term. The exploitation of such reference density

for the parametrization of the LC-DFTB method requires, however, a careful revision of the

employed DFTB approximations.

We conclude that for the superposition of atomic densities guess the zeroth-order theory does

not show the behavior, expected from a successful self-interaction error correction. For this reason

the SCF extension, described in next section is required.

3.7 SELF-CONSISTENT FIELD LC-DFTB

The implementation of the LC-DFTB-0 and analysis of the results presented in the previous

section suggested the necessity of the self-consistency in the solution of the LC-DFTB equa-

tions. In following, the results of ref. [137] are rederived and further extended to the practical

computational scheme.

We come back to the energy expansion Eq. 3.13 and include now the terms, which are of the

second order in the difference density matrix ∆Pµν

E2nd = 1
2

∑
µναβ

∆Pµν∆Pαβ

[
(µν|αβ)+ f xc

µναβ

]
− 1

4

∑
µναβ

∆Pµν∆Pαβ(µα|βν)lr. (3.21)

Here the first term contains the Hartree energy and the energy contribution due to the linearized

xc-potential and the second term is the long-range HF exchange term.

As in the case of zeroth-order contributions the aim is to apply the dimer (or two-center)

approximation in order to reduce the complexity of the method. A widely used integral approxima-

tion which allows to reduce the general four-center integrals to the sum of two-center integrals is

known as the Mulliken approximation [8]. Assume the charge distribution φµ(r)φν(r), µ ∈ A, ν ∈ B,

generated by two orbitals, which are located at centers A and B. We assume that the orbitals

φα form a complete basis at a given center. Then each of these orbitals can be expanded at the

different center

φµ(r)= ∑
σ∈B

[∫
φµ(r′)φσ(r′) dr′

]
φσ(r)= ∑

σ∈B
Sµσφσ(r) (3.22)

φν(r)= ∑
σ∈A

[∫
φν(r′)φσ(r′) dr′

]
φσ(r)= ∑

σ∈A
Sνσφσ(r). (3.23)
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The product of the orbitals can be then expressed in the symmetrized form

φµ(r)φν(r)= 1
2


Sνµφµ(r)+ ∑

σ∈A
σ 6=µ

Sνσφσ(r)

φµ(r)+

Sµνφν(r)+ ∑
σ∈B
σ 6=ν

Sµσφσ(r)

φν(r)



= 1
2

Sµν

(|φµ(r)|2 +|φν(r)|2)+ 1
2

 ∑
σ∈A
σ 6=µ

Sνσφσ(r)φµ(r)+ ∑
σ∈B
σ 6=ν

Sµσφσ(r)φν(r)

 . (3.24)

The first term of this expansion is known as the Mulliken approximation. Note, that if the orbitals

are located on the same atom (A = B), the charge distribution within this approximation is

non-zero only if the orbitals are equal. We approximate the two-electron integrals using this

approximation

(µν|αβ)≈ 1
4

SµνSαβ

(
(µµ|αα)+ (µµ|ββ)+ (νν|αα)+ (νν|ββ)

)
. (3.25)

In this way the four-index quantities of the second-order term Eq. 3.21 can be written as

(µν|αβ)+ f xc
µναβ =

∫
φµ(r)φν(r)φα(r′)φβ(r′)

[
1

|r−r′| + f ωxc[ρ0](r,r′)
]

drdr′

≈ 1
4

SµνSαβ

(
γfr
µα+γfr

να+γfr
µβ+γfr

νβ

)
(3.26)

(µν|αβ)lr =
∫
φµ(r)φν(r)φα(r′)φβ(r′)

1−exp(−ω|r−r′|)
|r−r′| drdr′

≈ 1
4

SµνSαβ

(
γlr
µα+γlr

να+γlr
µβ+γlr

νβ

)
, (3.27)

where the full-range (fr) and long-range (lr) γ-integrals are introduced

γfr
µν =

∫
|φµ(r)|2|φν(r′)|2

[
1

|r−r′| + f ωxc[ρ0]
]

drdr′ (3.28)

γlr
µν =

∫
|φµ(r)|2|φν(r′)|2 1−exp(−ω|r−r′|)

|r−r′| drdr′. (3.29)

The charge distributions |φµ(r)|2 under the integral constitute the averaged charge distributions

FA(r)= 1
(l+1)2

∑
µ∈A

|φµ(r)|2, (3.30)

which are assumed to have the form

FA(r)= τ3
A

8π
e−τA |r−RA |, (3.31)

where RA is the position of the atom A and the decay constant τA has still to be determined. We

obtain the final expressions for the integrals by replacing the initial charge distributions with

the averaged ones

γfr
µν = γfr

AB = τ3
Aτ

3
B

(8π)2

∫
e−τA |r−RA |e−τB|r′−RB|

[
1

|r−r′| + f ωxc[ρ0]
]

drdr′ (3.32)

γlr
µν = γlr

AB = τ3
Aτ

3
B

(8π)2

∫
e−τA |r−RA |e−τB|r′−RB| 1−exp(−ω|r−r′|)

|r−r′| drdr′. (3.33)
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This is also known as monopole approximation [42]. We evaluate these integrals in the same way

as in the standard DFTB method. For the off-site elements A 6= B the contribution to the full-range

integral due to the exchange-correlation kernel f ωxc is assumed to vanish. The full-range integral

γfr is then just a two-center Coulomb integral over spherically symmetric charge distribution with

Slater-type profile Eq. 3.31. The long-range integral γlr differs only in the interaction operator,

which can be separated into the Coulomb and Yukawa parts. For both cases analytical formulas

are available. The case of Coulomb interaction has been covered in the original paper on the

self-consistent extension of the DFTB method [42]. We extend the formula for the more general

case of Yukawa interaction. The γ−integral over the Yukawa interaction yields (see chapter A for

details)

γ
Y ,ω
AB = τ3

Aτ
3
B

(8π)2

∫
e−τA |r−RA |e−τB|r′−RB| exp(−ω|r−r′|)

|r−r′| drdr′

= τ4
Aτ

4
B

(τ2
A −ω2)2(τ2

B −ω2)2

e−ωR

R

−
[

e−τAR

(
τ2

A

τ2
A −ω2

τAτ
4
B

2(τ2
B −τ2

A)2
− τ4

A

(ω2 −τ2
A)2

(τ6
B −3τ2

Aτ
4
B +2ω2τ4

B)

(τ2
A −τ2

B)3R

)

+ e−τBR

(
τ2

B

τ2
B −ω2

τBτ
4
A

2(τ2
A −τ2

B)2
− τ4

B

(ω2 −τ2
B)2

(τ6
A −3τ2

Bτ
4
A +2ω2τ4

A)

(τ2
B −τ2

A)3R

)]
. (3.34)

It contains the result of Elstner et al. [42] as the special case (ω→ 0). Thus γlr
AB = γY ,0

AB −γY ,ω
AB . The

long-range γ-integral for different values of the range-separation parameter ω and for the case of

carbon-nitrogen interaction is plotted as a function of interatomic distance in Fig. 3.5.

In the standard DFTB method one usually requires the Hubbard derivative UDFTB
A for a

single atom A to be equal to the Hubbard derivative UDFT
A from a reference DFT calculation

(compare Eq. 1.26)

UDFT
A =UDFTB

A . (3.35)

This fixes the values of the on-site γ−integrals and decay constants τA for each atomic species

[42]. We require that the LC-DFTB method for the case ω→ 0 resembles the DFTB method, based

on the same local functional. For this reason we impose the condition Eq. 3.35 to the LC-DFTB.

The presence of the long-range HF exchange term requires, however, the correction of the scheme

as described in section 3.8. In short, the decay constants for each atomic species have to be

corrected.

With the approximations and definitions described above, the total energy of the LC-DFTB

method reads

E =∑
µν

PµνH0
µν+

1
8

∑
µναβ

∆Pαβ∆PµνSµνSαβ

(
γfr
µα+γfr

µβ+γfr
να+γfr

νβ

)
− 1

16

∑
µναβ

∆Pαβ∆PµνSµαSβν

(
γlr
µβ+γlr

µν+γlr
αβ+γlr

αν

)
+Erep. (3.36)
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Applying the variational principle with respect to the molecular orbital coefficients cµi to the

energy expression we obtain the generalized eigenvalue problem as before with the Hamiltonian

Hµν = H0
µν+

1
4

∑
αβ

∆PαβSµνSαβ

(
γfr
µα+γfr

µβ+γfr
να+γfr

νβ

)
− 1

8

∑
αβ

∆PαβSµαSβν

(
γlr
µβ+γlr

µν+γlr
αβ+γlr

αν

)
. (3.37)

Since the long-range exchange term can not be formulated in terms of Mulliken charges as it is the

case for the Hartree term the self-consistency in the LC-DFTB method is achieved with respect

to the density matrix and not with respect to the Mulliken charges as in the standard DFTB.

This is the case even in the limit ω→ 0. The convergence optimizing algorithms (density mixing

and level-shifting) as implemented for the DFTB method can be used with minor modifications

also for the LC-DFTB.
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Figure 3.6: The atomic Hubbard parameter U = ∂2Eatom
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the LC-DFTB method (gray dots) was calculated with the decay constant τ= 3.2U. We observe
the violation of the condition Eq. 3.35. The analytical formula Eq. (3.52) (orange line) is plotted
for completeness.

3.8 HUBBARD PARAMETERS

In the standard DFTB method parameters τA for the γ−integrals are fixed according to the

condition (Eq. 1.26)

τA = 16
5

UDFT
A = 3.2UDFT

A . (3.38)

If we use this simple definition for the LC-DFTB we find that the initial requirement Eq. 3.35

ULC-DFT
A =ULC-DFTB

A (3.39)

is violated. We demonstrate this for the case of a carbon atom in Fig. 3.6. We plot the atomic

Hubbard derivative, calculated with the LC-DFT method (green line) as the function of the

range-separation parameter ω. This is compared to the Hubbard derivative, obtained by the

LC-DFTB method, if the naive definition of decay constant Eq. 3.38 is used (gray dots). The two

curves increasingly differ if the parameter ω is increased.
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3.8.1 Influence of the long-range HF exchange term

The γ−integral over the Yukawa interaction with screening parameter ω can be reduced to the

one-dimensional integral (section A.1)

γ
Y ,ω
AB = 2τ4

Aτ
4
B

πRAB

∫ ∞

0

qsin(qRAB)
(q2 +τ2

A)2(q2 +τ2
B)2(q2 +ω2)

dq. (3.40)

To obtain the expression for the on-site value A = B of this integral, where τA = τB and RAB → 0,

we expand the sine function around 0 and apply the residue theorem (section A.3). This results

in the expression

γ
Y ,ω
AA = τ8

A

(τ2
A −ω2)4

[
5τ6

A +15τ4
Aω

2 −5τ2
Aω

4 +ω6

16τ5
A

−ω
]

. (3.41)

For the case ω→ 0 the integral Eq. 3.40 is taken over the Coulomb interaction and this expression

reduces to the already mentioned DFTB result, which in LC-DFTB is equal to the full-range

γ−integral

γfr
AA = lim

ω→0
γ

Y ,ω
AA = 5

16
τA. (3.42)

The on-site value of the long-range γ−integral γlr
AA = γY ,0

AA −γY ,ω
AA reads

γlr
AA = 5

16
τA − τ8

A

(τ2
A −ω2)4

[
5τ6

A +15τ4
Aω

2 −5τ2
Aω

4 +ω6

16τ5
A

−ω
]

. (3.43)

In order to ensure the basis set consistency, the parameters τA employed in long-range and

full-range γ−integrals should be related. We require, that the decay constant of a particular atom

for both full-range and long-range γ−integral should be the same (see also subsection 3.8.2).

We derive the analytical expression for the Hubbard derivative as obtained from the LC-

DFTB. We consider the total energy of the LC-DFTB method for the case of a single atom. Note

that in this case µ,ν ∈ A, Sµν = δµν, H0
µν = δµνε

free atom
µ , γlr/fr

µν = γlr/fr
AA = γlr/fr and the total energy

expression reads

Eatom =∑
µ

Pµµε
free atom
µ + 1

2
γfr ∑

µα

∆Pµµ∆Pαα− 1
4
γlr ∑

µν

∆Pµν∆Pµν. (3.44)

The difference density matrix can be expressed as

∆Pµν = Pµν−P0
µν =

N∑
i=1

ni cµi cνi −
N∑

i=1
n0

iδµν, (3.45)

where the n0
i are the occupations of the reference density matrix P0

µν. We note, that in the case of

one atom, the orthogonality of the molecular orbitals implies

δi j =
∫
ψi(r)ψ j(r) dr=∑

µν

cµi cν j

∫
φµ(r)φν(r) dr=∑

µν

cµi cν jSµν =
∑
µ

cµi cµ j. (3.46)
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Using these definitions we obtain

∑
µα

∆Pµµ∆Pαα =∑
µ

N∑
i=1

(ni cµi cµi −n0
i )

∑
α

N∑
j=1

(n j cα j cα j −n0
j )=

N∑
i=1

(ni −
∑
µ

n0
i )

N∑
j=1

(n j −
∑
α

n0
j )

=
N∑

i=1

N∑
j=1

nin j + terms linear in ni (3.47)

∑
µν

∆Pµν∆Pµν =
∑
µν

N∑
i=1

(ni cµi cνi −n0
iδµν)

N∑
j=1

(n j cµ j cν j −n0
jδµν)

=∑
µν

N∑
i=1

N∑
j=1

nin j cµi cνi cµ j cν j + terms linear in ni

=
N∑

i=1

N∑
j=1

nin jδi j + terms linear in ni

=
N∑

i=1
n2

i + terms linear in ni. (3.48)

This gives the total energy of a single atom in the LC-DFTB method in terms of occupation

numbers ni

Eatom = 1
2
γfr

N∑
i=1

N∑
j=1

nin j − 1
4
γlr

N∑
i=1

n2
i + terms linear in ni, (3.49)

where we write out only the terms, quadratic in occupation numbers. The Hubbard derivative

is practically performed using finite difference method by varying the charge of the atom. The

variation is done by rescaling the density matrix on the initial step of the calculation. The SCF

converges then to the ground state, where the excess charge is distributed over the highest

occupied shell. 3 Thus we obtain the change in the occupations of the highest occupied shell only

and it suffices to consider only the contributions to the energy quadratic in the occupation of the

orbital in that shell. The occupation of each orbital in the shell is n/(2l+1), where n is (fractional)

number of electrons in the shell and l its angular momentum. The total energy is then

Eatom = 1
2
γfr

shell∑
i

shell∑
j

( n
2l+1

)2 − 1
4
γlr

shell∑
i

( n
2l+1

)2 + terms linear in n

= 1
2
γfr(2l+1)2

( n
2l+1

)2 − 1
4
γlr(2l+1)

( n
2l+1

)2 + terms linear in n

= 1
2
γfrn2 − 1

4
γlr 1

2l+1
n2 + terms linear in n. (3.50)

Here the summation is performed over the highest occupied shell. Performing the second deriva-

tive with respect to the occupation n we obtain

ULC-DFTB = ∂2Eatom

∂n2 = γfr − 1
2
γlr 1

2l+1
. (3.51)

This, together with Eqn. 3.43 and 3.42 provides the analytical expression for the value of the
3This is known as aufbau-principle [150].
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Figure 3.7: Decay constants obtained from condition τ= 3.2U (right panel) and corrected decay
constants τ as used in LC-DFTB method, obtained by solving the Eq. 3.52 (left panel) for elements
H,C,N,O,S as a function of range-separation parameter ω.

Hubbard derivative as obtained from the LC-DFTB calculation on a single atom as a function of

the decay constant τA and the range-separation parameter ω

ULC-DFTB = γfr
AA − 1

2
1

2l+1
γlr

AA

= 5
16
τ

[
1− 1

2(2l+1)

(
1− τ8 +3τ6ω2 −τ4ω4 +0.2ω6τ2 −3.2τ7ω

(τ2 −ω2)4

)]
, (3.52)

where l is the angular momentum of the HOMO orbital of the considered atom. Back to the

Fig. 3.6, we confirm the analytical formula Eq. 3.52 (orange line), where we use the same decay

constants as for the numerical LC-DFTB calculation (gray dots).

With this analytical result we can now enforce the condition Eq. 3.39. For this, the decay

constants have to be redefined. The Hubbard parameter ULC-DFT
A from the atomic LC-DFT

calculation for a given atom A and range-separation parameter ω fixes via Eq. 3.52 (where

ULC−DFTB = ULC-DFT
A ) the decay constant τA. Solving this equation for τ gives the corrected

decay constants which are then used for the LC-DFTB parametrization. A possible numerical

algorithm for the solution of the equation Eq. 3.52 is outlined in Appendix C. The decay constants

and corrected decay constants are plotted in Fig. 3.7 for different elements as a function of

range-separation parameter ω.
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3.8.2 Comment on the decay constant

We assumed that the decay constant for full-range and long-range γ−integrals for a given atomic

species should be the same. The full-range γ−integral stems from the Hartree potential and the

linearized xc-potential. However, it is approximated as the integral over the Coulomb interaction

only. This is the same situation as in standard DFTB, where by imposing the condition τ= 3.2U ,

the effective charge distribution FA ∼ e−τr is in fact determined also by the xc-potential of the

atomic DFT. With other words the effect of the xc-potential is included into the decay constant.

Assuming the decay constant for long-range and full-range integrals to be equal and imposing

the condition Eq. 3.39 to obtain the decay constant, we introduce the effects of the xc-potential

into both full-range and long-range integrals. This does not correspond to the pure long-range

corrected functional. Thus one can argue, that the effective charge distributions FA for the

full-range integral and the long-range integral should be different. The introduction of a second

decay constant requires, however, an additional condition. Alternative scheme for example could

be to evaluate the long-range γ−integral directly from averaged basis functions

γlr =
∫

1
(l+1)2

∑
µ∈A

|φµ(r)|2 1− e−ω|r−r′|

|r−r′|
1

(l+1)2

∑
µ∈A

|φµ(r′)|2drdr′ (3.53)

and then using the formula Eq. 3.52 the full-range decay constant can be obtained from

5
16
τfr =ULC-DFT + 1

2(2l+1)
γlr. (3.54)

This again will ensure that the atomic LC-DFTB will give the correct Hubbard derivative.

3.9 RUN-TIME HAMILTONIAN EVALUATION

We found that the bottleneck of the test run-time LC-DFTB calculations for the systems with

number of atoms < 1000 is the evaluation of the exchange matrix (Eq. 3.55 below). The naive four

loop algorithm is inefficient and does not reflect the factual quadratic scaling of the LC-DFTB

method with an increase of system size. We have identified two ways of achieving the quadratic

scaling. On the one hand we can use the neighbor list-based algorithms. On the other hand

we can use the four loop method in combination with a cutoff condition, which allows to decide

whether the given Hamiltonian sub-block has to be evaluated or whether the evaluation should

be avoided. In following we present both approaches.

3.9.1 Direct SCF and thresholding algorithm

We search for inspiration in the techniques, successfully used in ab initio software packages. The

implementation of a hybrid DFT-HF SCF method, based on a finite auxiliary basis expansion

requires the evaluation of large numbers of one- and two-electron integrals and an efficient way

to assemble the Hamiltonian from the density matrix and the respective matrix elements. The
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evaluation of the two-electron integrals is computationally very expensive. In order to use the

computational resources in an optimal way there are essentially two ways of organizing the

calculation. On the one hand, the one- and two-electron integrals do not change during the single

point calculation and can be thus precomputed. This approach is used in the atomic DFT code

from the DFTB parametrization toolkit, which has been mentioned already. For large systems

(hundreds of atoms) and/or large basis sets (10 basis functions per atom), however, this approach

is not practicable due to the high memory requirements. An alternative approach is to use cutoff

conditions, which allow to decide whether a sub-block of a Hamiltonian is negligible or should be

taken into account. Because of this, the integrals are evaluated only if needed. This technique is

known as direct SCF [4, 64].

In the LC-DFTB method, the integrals and Hamiltonian matrix elements are precomputed or

parametrized in analytical form. The computational challenge is thus only in the construction of

the Hamiltonian from these parameters. It turns out that the new exact exchange term, due to the

way it couples to the density matrix complicates the construction of the LC-DFTB Hamiltonian as

compared to the standard DFTB. While in the latter efficient sparse-matrix techniques, applied

to Hartree-like terms lead to excellent performance [6], the evaluation of the exchange matrix in

the LC-DFTB method

KLC-DFTB
µν =−1

8

∑
AB

(γCB +γAB +γCD +γAD)︸ ︷︷ ︸
ΓABCD

∑
α∈A

∑
β∈B

SµαSβν∆Pαβ (3.55)

is the bottleneck of calculation as observed in test calculations.

We notice that an atomic sub-block (C,D) of the exchange matrix is proportional to a product

of overlap integrals between the basis functions at different centers. Extending the system (add

more atoms), the number of non-vanishing overlap matrix elements will grow linearly, although

the overall number of matrix elements grows quadratically with basis size. In Fig. 3.8 the number

of numerically non-vanishing overlap matrix elements (Sµν > 10−16) as a function of basis size for

polyacene oligomer geometries (chemical structural formula is sketched as inset) with number

of monomer units n ranging from n = 1 to n = 150 is depicted. The scaling is clearly linear for

large systems. For this reason we expect that the exchange matrix construction in the LC-DFTB

should scale quadratically with the number of basis functions. In fact the thresholding algorithm,

which will be presented in following and the neighbor list-based algorithm, presented in section

3.9.2, use this finding, however in different ways.

The direct SCF approaches use the linearity of the Hamiltonian with respect to the density

matrix Pαβ

H(Pn)= H(Pn−1 +Pn −Pn−1︸ ︷︷ ︸
∆Pn

)= H(Pn−1)+H(∆Pn), (3.56)

where Pn is the density matrix at the n−th SCF cycle. In the calculation, which approaches

convergence the elements of the difference density matrix ∆Pn get smaller and hence the
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Figure 3.8: Number of non-vanishing overlap matrix elements as a function of basis size M
for oligoacene geometries (inset) with number of monomer units n = 1, ...,150 (diamonds). The
functions f = M (solid line) and f = M2 (dashed line) serve as the guide to the eyes.

contribution to the Hamiltonian H(∆Pn) also gets smaller. At each SCF cycle the Hamiltonian

sub-blocks are tested due to some thresholding condition. If the contribution of a sub-block of the

Hamiltonian H(∆Pn) is estimated to be negligible it’s evaluation is omitted. We adopt these ideas

to the LC-DFTB method. First, we rewrite the LC-DFTB exchange matrix Eq. 3.55 in terms of

quantities

Qµν

AB = ∑
α∈A

∑
β∈B

Sµα∆Pn
αβSβν, (3.57)

which then yields (µ ∈ C,ν ∈ D)

KLC-DFTB
µν =−1

8

∑
AB
ΓABCDQµν

AB. (3.58)

For each Hamiltonian sub-block (C,D) and atom pair (A,B), we estimate the quantities Qµν

AB as

Qµν

AB ≤ ∑
α∈A

∑
β∈B

|Sµα||∆Pn
αβ||Sβν| ≤ s̃BD · s̃AC ·Pn

max
∑
α∈A

∑
β∈B

(3.59)

and decide whether to evaluate them according to the condition

s̃BD · s̃AC ·Pn
max ≤ εthreshold, (3.60)
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where

s̃AB = max
α∈A,β∈B

(|Sαβ|), Pn
max =max

αβ
(|∆Pn

αβ|). (3.61)

The quantities s̃AB have to be evaluated only once at each geometry. The factor coming from

the summation in Eq. 3.59 is absorbed in the threshold parameter εthreshold, which we obtain

empirically by testing the error in eigenvalues for different values of εthreshold. The thresholding

algorithm has been tested on a series of polyacene oligomers with number of monomer units

ranging from n = 5 to n = 150. In Fig. 3.9 the time per SCF cycle as a function of basis size is

depicted. We use the threshold values εthreshold = 10−16,10−8,10−6. In addition, we extrapolate

the timing for the case εthreshold = 10−16, assuming a quadratic dependence of the execution time

per SCF cycle t(M) on the basis size M

t(M)= cM2, (3.62)

where t(M0) is the execution time for the smallest oligomer (M0 = 102). It can be clearly seen,

that the algorithm shows quadratic scaling with the basis size. The cubic scaling due to the
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diagonalization does not seem to show up for the systems tested here. However, it is expected for

larger systems. Moreover, for εthreshold = 10−6 we find a reduction of computational cost of about

2−3 times by keeping the mean absolute error in the eigenvalues below 10−6 Hartree (inset of

Fig. 3.9). This suggests, that the value εthreshold = 10−6 can be considered an appropriate choice

for practical calculations.

3.9.2 Neighbor list-based algorithm

The DFTB+ [6] code, which we use as a basis for the LC-DFTB extension, is implemented using

the neighbor list technique. The concept of neighbor list can be introduced on the following simple

example. Assume the quantity Si j ∈ R, ∀(i, j) ∈ A = {(k, l)| k, l ∈ [1, N]} and Si j = S ji. This can

be for instance the overlap integral matrix of orbitals with indices i, j. Further let’s assume,

that there exists a subset B ⊂ A of non-vanishing elements Si j, such that B = {(k, l) ∈ A| Skl 6= 0}.

Our task is to evaluate the sum over all elements Si j. The naive summation is obviously a N2

operation. This method does not take into account, that there are vanishing elements of Si j which

do not contribute to the sum. Especially if the number of vanishing elements is large this means

a considerable computational overhead. The idea is to sum over the elements of the set B instead

of A. Let us additionally define N(k)= {l ∈N| (k, l) ∈ B, l ≥ k}, N̄(k)= {(k, l) ∈ B| l > k}. Then

N∑
i=1

N∑
j=1

Si j =
N∑

i=1

[∑
j<i

Si j +
∑
j>i

Si j +Sii

]
= 2

N∑
i=1

N∑
j>i

Si j +
N∑

i=1
Sii = 2

N∑
i=1

∑
j∈N̄(i)

Si j +
N∑

i=1
Sii, (3.63)

where we used the property Si j = S ji. This reduces the scaling of the sum evaluation from

quadratic to linear (although with possibly large prefactor). To see this, let us assume that the

density of atoms (number of atoms per volume) in a typical physical system is D. Moreover, let

us assume, that the overlap integrals for two arbitrary atoms vanish for some common cutoff

distance R. Then, given an atom, the number of neighbors of this atom is constant, regardless of

the system size, since the number of atoms inside the sphere around this atom with radius R will

usually not exceed 4
3πR3D.

From this consideration we can conclude that evaluation of quantities, involving the double

sum over the overlap matrix will scale quadratically. This is the case for the evaluation of the

exchange matrix. We want to apply the neighbor list technique to the exchange matrix evaluation

problem. Since the overlap matrix is symmetric, the neighbor list is defined in the way, such that

the summation as in example above is the triangle sum. While the evaluation of the Hartree term

(second order term) in the DFTB Hamiltonian is straightforward, the HF exchange term has a

different structure and a new formula has to be derived. Note, that the Hamiltonian evaluation

is actually a summation. The idea is to run two sums over all basis elements and two sums over

the neighbors of each of the variables in the full sums such that one index of the overlap matrix

belongs to the full sum and the second to the neighbor sum. For this we have to rearrange the
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four-loop sum over all basis elements in the following way

∑
µν

∑
αβ

∆PαβSµαSβνΓ
lr
µαβν =

∑
µ≤α

∑
ν≤β

∆PαβSµαSβνΓ
lr
µαβν+

∑
µ≤α

∑
β<ν

∆PαβSµαSβνΓ
lr
µαβν

+ ∑
α<µ

∑
ν≤β

∆PαβSµαSβνΓ
lr
µαβν+

∑
α<µ

∑
β<ν

∆PαβSµαSβνΓ
lr
µαβν (3.64)

= ∑
µ≤α

∑
ν≤β

∆PαβSµαSβνΓ
lr
µαβν+

∑
µ≤α

∑
ν<β

∆PανSµαSνβΓ
lr
µανβ

+ ∑
µ<α

∑
ν≤β

∆PµβSαµSβνΓ
lr
αµβν+

∑
µ<α

∑
ν<β

∆PµνSαµSνβΓ
lr
αµνβ, (3.65)

where Γlr
µαβν

=
(
γlr
µβ

+γlr
αβ

+γlr
µν+γlr

αν

)
. Thus we can now express the four loop sum by the two-loop

sum and two sums over the neighbors

∑
µν

∑
αβ

∆PαβSµαSβνΓ
lr
µαβν =

∑
µν

[ ∑
α∈N(µ)

∑
β∈N(ν)

(
∆PαβSµαSβνΓ

lr
µαβν → Hµν

)
+ ∑
α∈N(µ)

∑
β∈N̄(ν)

(
∆PανSµαSνβΓ

lr
µανβ → Hµβ

)
+ ∑
α∈N̄(µ)

∑
β∈N(ν)

(
∆PµβSαµSβνΓ

lr
αµβν → Hαν

)
+ ∑
α∈N̄(µ)

∑
β∈N̄(ν)

(
∆PµνSαµSνβΓ

lr
αµνβ → Hαβ

)]
. (3.66)

Here, the operation → Hµν means that each summand from the sub-sum over α,β in that line is

added to the contents of the Hamiltonian matrix element Hµν. We test the scaling of this algorithm

on a set of polyacene oligomers as it was done for the case of thresholding algorithm. We confirm

again the quadratic scaling. The average time per SCF cycle is plotted in Fig. 3.10 (triangles) and

compared to the thresholding algorithm with εthreshold = 10−16 (diamonds) and εthreshold = 10−6

(squares). We find comparable performance of the neighbor list-based algorithm and thresholding

algorithm with εthreshold = 10−16, while for εthreshold = 10−6 the latter clearly outperforms the

neighbor list-based algorithm. As has been shown, the thresholding algorithm uses in addition to

the sparsity of the overlap matrix also the fact, that if the calculation approaches convergence

the difference between the density matrices at subsequent iterations is getting smaller. It should

be noted, that the combination of both approaches is in principle possible.

3.10 EVALUATION OF ENERGY GRADIENTS

In the DFT and DFTB the total energy of a N-electron system is treated within the Born-

Oppenheimer approximation. The electronic motion has been separated from the motion of

nuclei, which are assumed to be fixed. Thus the total energy depends parametrically on the

set of nuclear coordinates. With the SCF procedure the total energy is minimized for a given

geometric configuration. This procedure is called single point calculation. Of course the minimum
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of the total energy with respect to a given geometric configuration is in general not the global

minimum. To obtain the geometric configuration, which globally minimizes the total energy it is

thus necessary to perform the two-step minimization process. The total energy is minimized in

the space of the geometric configurations. For each geometric configuration the total energy is

minimized in a single point calculation. To perform such a minimization process the matrix of

second derivatives of the total energy with respect to all nuclear coordinates (Hessian) is required.

There are, however, methods which do not require the explicit evaluation of the Hessian. It is

guessed from the matrix of first derivatives, which are called the energy gradients or forces.

The steepest descent and conjugate gradient methods are the examples of such methods. In the

DFTB+ code [6], which we use as the basis for the extension of DFTB to LC-DFTB the steepest

descent and conjugate gradient algorithms are already implemented. Thus we will discuss only

the evaluation of energy gradients.

In following we derive the formulas for the energy gradients due to the additional long-range

HF exchange term and describe the algorithm for the efficient evaluation of these contributions.

The force component Fk due to the change in the k−th nuclear coordinate reads

Fk =
dL

dRk
=∑

µi

∂L
∂cµi

∂cµi

∂Rk
+ ∂L
∂Rk

, (3.67)

where the functional L = L(cµi(Rk),Rk) is defined as

L = Etot −∑
i

niεi
∑
µν

(
cµiSµνcνi −1

)
. (3.68)

Since on SCF convergence the condition

∂L
∂cµi

= 0, ∀cµi (3.69)

is fulfilled, only explicit dependence of the total energy Etot on nuclear coordinates should be

considered. This means, that the coefficients cµi and thus the density matrix don’t have to be

differentiated (same argument as for standard DFTB [41]). All total energy contributions in

the LC-DFTB can be treated in the same way as in the standard DFTB [41] with exception of

long-range HF exchange term. The contribution to forces, due to this new term will be derived

in following. First, we reformulate the expression for the long-range HF exchange energy by

resummation

Elr =− 1
16

∑
CD

∑
AB

∑
α∈A

∑
β∈B

∑
µ∈C

∑
ν∈D

∆Pµν∆PαβSµαSβν

(
γlr

CB +γlr
CD +γlr

AB +γlr
AD

)
(3.70)

=−1
8

∑
CD

∑
AB

∑
α∈A

∑
β∈B

∑
µ∈C

∑
ν∈D

γlr
CD

(
∆Pαβ∆Pµν+∆Pµβ∆Pαν

)
SµαSνβ. (3.71)

We perform now the derivative with respect to the coordinate RK = (Rx,Ry,Rz)K of the atom K .

It is clear, that only those overlap matrix elements and γ−integrals contribute to the derivative,
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which depend on the atom K and some other atom A 6= K . The task is thus to sort out the terms

which vanish on doing the derivative. We introduce the differential operator DK , such that

DK E = FK =∇K E, then

FK =−1
8

∑
CD

∑
AB

∑
α∈A

∑
β∈B

∑
µ∈C

∑
ν∈D

(
∆Pµν∆Pαβ+∆Pµβ∆Pαν

)
DK

(
SµαSβνγ

lr
CD

)
(3.72)

=−1
8

∑
CD

∑
AB

∑
α∈A

∑
β∈B

∑
µ∈C

∑
ν∈D

(
∆Pµν∆Pαβ+∆Pµβ∆Pαν

)×
×

[
Sβνγ

lr
CD

DK Sµα K = C or K = A and C 6= A

0 else

+Sµαγ
lr
CD

DK Sβν K = B or K = D and B 6= D

0 else

+SµαSβν

DKγ
lr
CD K = C or K = D and C 6= D

0 else

]
(3.73)

=− 1
8

∑
C

∑
A 6=C

∑
BD

∑
α∈A

∑
β∈B

∑
µ∈C

∑
ν∈D

γlr
CDSβν

(
DK Sµα

)
[δKC +δK A]

(
∆Pµν∆Pαβ+∆Pµβ∆Pαν

)
− 1

8

∑
D

∑
B 6=D

∑
AC

∑
α∈A

∑
β∈B

∑
µ∈C

∑
ν∈D

γlr
CDSµα

(
DK Sβν

)
[δKB +δKD]

(
∆Pµν∆Pαβ+∆Pµβ∆Pαν

)
− 1

8

∑
D

∑
C 6=D

∑
AB

∑
α∈A

∑
β∈B

∑
µ∈C

∑
ν∈D

SβνSµα

(
DKγ

lr
CD

)
[δKC +δKD]

(
∆Pµν∆Pαβ+∆Pµβ∆Pαν

)
(3.74)

=− 1
4

∑
C 6=K

∑
AB

∑
α∈A

∑
β∈B

∑
µ∈C

∑
κ∈K

(
Sαβ

(
DK Sκµ

)(
∆Pκβ∆Pµα+∆Pκα∆Pµβ

)(
γlr

KB +γlr
CB

)
+

(
DKγ

lr
KC

)
SκβSαµ

(
∆Pκµ∆Pβα+∆Pκα∆Pβµ

))
. (3.75)

This expression is written in the form, which is convenient to formulate the neighbor list-based

algorithm. The implementation of the LC-DFTB in the DFTB+ code uses the neighbor list

algorithm for the evaluation of the contributions to the force due to the long-range HF exchange

part. The sketch of the algorithm is provided in appendix E.

We test the implementation of the algorithm on series of oligoacenes with number of monomer

units ranging from n = 5 to n = 150. The evaluation time for the single force matrix (energy

gradients for all atoms) as a function of basis size is plotted in Fig. 3.10. Additionally we plot

the time per SCF cycle for the neighbor list-based algorithm for the Hamiltonian evaluation

(section 3.9.2 ) and the thresholding algorithm (section 3.9.1). We observe the quadratic scaling

for the force matrix evaluation. We find that it is slower than the average SCF iteration from the

neighbor list-based algorithm by the factor 1−2. Further tests show that the convergence behavior

of a geometry optimization and the accuracy of forces of the present LC-DFTB implementation

are comparable to that of the standard DFTB.

50



3.10. EVALUATION OF ENERGY GRADIENTS

1

10

100

1000

100 1000

T
im

e
 [

se
c]

Number of basis functions

full force matrix
one SCF cycle (average), neighbor list
one SCF cycle (average), εthreshold=10-16

one SCF cycle (average), εthreshold=10-6

n

Figure 3.10: The force calculation time compared to the average time per SCF iteration for
neighbor list-based algorithm and thresholding algorithm with εthreshold = 10−16 and εthreshold =
10−6. The test geometries are that of the polyacene oligomers (inset) with number of monomer
units n = 5 to n = 150.
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4
EVALUATION OF TWO-ELECTRON INTEGRALS

Evaluation of two-electron integrals is one of the most problematic parts of practical DFT or

Hartree-Fock calculations. It is no surprise, that historically the algorithms for ab initio

calculations have been designed according to the available integral evaluation methods. The wide

use of the Gaussian-type orbitals (GTO) in the majority of implementations is due to the existence

of efficient analytical procedures for the evaluation of two-electron integrals over the GTO. In

contrast to the physical Slater-type orbitals (STO), GTO are thus a mathematical compromise.

Tremendous work have been done on optimization and design of efficient GTO basis sets, which

now together with plane-wave based methods dominate in the practical all-electron calculations.

However, GTO basis sets, suitable for publication quality calculations, go beyond minimal basis

and at least double zeta size is usually recommended. Since STO have correct physical behavior,

the minimal STO basis outperforms the minimal GTO. For this reason minimal STO basis sets

have been the first choice in the early semi-empirical methods, like CNDO or INDO [153, 154].

The parametrization tools of standard DFTB method and in this way the DFTB itself relies on

the STO basis as well. Since the extension to the long-range corrected functionals requires the

evaluation of two-electron integrals over Yukawa interaction, the efficient integration routines

should be available. This chapter is dedicated to the evaluation of two-electron integrals. In

section 4.1 we motivate the choice of the particular integration scheme for the extension of the LC-

DFTB method. The general description of the integration method is given in section 4.2. Specific

routines for one-center integrals, which are required in the atomic DFT code, which is a part of

the parametrization toolkit are discussed in section 4.3. The evaluation method for the two-center

integrals, required for the modification of the two-center code from the parametrization toolkit is

presented in section 4.4.
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4.1 CHOICE OF THE INTEGRATOR

The right choice of an integration routine is crucial to the method. As has been stated before,

the standard DFTB parametrization relies on the atomic DFT code and the two-center code,

which generates the zeroth-order Hamiltonian and overlap matrix elements. The extension to the

long-range corrected functionals requires the evaluation of the non-local long-range HF exchange

term within the two-center code and the evaluation of one-center exchange integrals over Yukawa

interaction for the atomic DFT code.

We choose the integration method, proposed by Becke et. al [13, 18], which fits very well to

our purposes. First, it is fully numerical. This goes inline with the essence of the DFTB method,

which relies on the set of converged pseudo-atomic orbitals as a basis, independent of their

representation. This allows for more flexibility in the choice of the basis. The numerical orbitals

tabulated on some grid, or finite basis set expansion as the representation method are treated

on equal footing. Furthermore, the Becke integration method allows to use essentially the same

procedure for the integrals over Coulomb and Yukawa interactions. Only minor changes are

necessary. Finally, the method is robust, easy to implement and test. Thus it provides an all in

one solution for the parametrization machinery of the LC-DFTB method, described in this thesis.
1

4.2 DESCRIPTION OF THE SCHEME AND EXTENSION TO YUKAWA INTERACTION

In the section 2.4 the total energy expression and Hamiltonian of a general hybrid Hartree-

Fock-DFT theory has been expressed in terms of matrices, which elements are the one- and

two-electron integrals ( Eqn. 2.23, 2.24 and 2.25 ). The problem of the evaluation of two-electron

integrals over Slater-type orbitals or numerical orbitals φµ for the Coulomb ω= 0 and Yukawa

ω 6= 0 interaction arises

(µν|αβ)lr =
∫ ∫

φµ(r)φν(r)
exp(−ω|r−r′|)

|r−r′| φα(r′)φβ(r′) drdr′. (4.1)

This is the six dimensional integral with orbitals φµ, which in general are located at four different

centers. The Becke method is formulated for the integral over the general charge distributions

ρ(r),σ(r), rather than atom-centered orbitals

I =
∫ ∫

ρ(r)σ(r′)gω(r,r′) drdr′ =
∫
ρ(r)

[∫
σ(r′)gω(r,r′) dr′

]
dr, (4.2)

where gω(r,r′) is some interaction operator in space representation, which in our case is Coulomb

or Yukawa operator. The inner integral of Eq. 4.2 can be seen as a potential V (r), generated by

the charge distribution σ(r) and the interaction gω(r,r′)

V (r)=
∫
σ(r′)gω(r,r′) dr′. (4.3)

1 The choice of the particular parametrization components, however, is not of crucial importance. The same results
can be in principle achieved with more elaborate analytical integrators as for example those, described in ref. [177].
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The problem of the direct evaluation of this integral can be transformed into an equivalent

problem of solving a boundary value problem with some differential operator D and the boundary

condition lim
|r|→∞

V (r)= 0, such that

DV (r)=−4πσ(r). (4.4)

The interaction operator gω(r,r′) in Eq. 4.3 is the Greens function of the problem and satisfies

Dgω(r,r′)=−4πδ(r−r′). (4.5)

For the known interaction operator (Greens function) with a given boundary condition (potential

vanishes at infinity) we need to find a corresponding differential operator D. For the case of

Coulomb interaction operator g0(r,r′)= |r−r′|−1 the Poisson equation

∇2V (r)=−4πσ(r) (4.6)

for the potential vanishing at infinity has to be solved. The original paper deals with this

case. The extension to the integral over the Yukawa interaction, using this reasoning is then

straightforward. 2 The Yukawa interaction operator gω(r,r′) = exp(−ω|r−r′|)|r−r′|−1 is the

Greens function of the modified Helmholtz equation

(∇2 −ω2)
V (r)=−4πσ(r) (4.7)

with potential vanishing at infinity.

The numerical solution of Eq. 4.7 for a given charge distribution (integrand) σ(r) should be

performed in the real space numerically. For this reason we have to discretize the equation on

a grid, which is “good enough” to obtain the solution with desired precision and with as small

amount of operations as possible. We need thus to find an optimal distribution of grid points, such

that the integrand and the potential are represented in the best possible way with as less grid

points as possible. The typical molecular charge distribution and the corresponding potential are

atom-like and their main features are mainly changing around the nuclei. They decay fast and

monotonous to zero if far away from nuclei. Thus it is common to use a set of atom-centered grids,

with an optimal grid point distribution (quadrature). To avoid multiple counting of the integrand

contributions due to the use of overlapping grids, the integration space has to be partitioned into

the atom-centered cells by some set of partitioning functions fA(r)

ρ(r)=
atoms∑

A
fA(r)ρ(r)=

atoms∑
A

ρA(r),
atoms∑

A
fA(r)= 1, ∀r ∈R3. (4.8)

2The range separation with error-function leads to the interaction operator, which could not be easily identified
as a Greens function of some boundary value problem. This is the reason for the choice of the range separation of
Yukawa-type, which is also common in the literature.
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In the choice of partitioning functions we follow the suggestion of ref. [14]. This reduces the

integral over the general charge distributions, which can extend over many centers, to a sum of

two-center integrals

I =
atoms∑

AB
IAB =

atoms∑
AB

∫
ρB(r)

∫
σA(r′)gω(r,r′) dr′dr=

atoms∑
AB

∫
ρB(r)VA(r) dr. (4.9)

The inner integral is evaluated on a given one-center grid. The outer integral is then an overlap

integral
∫
ρBVAdr, evaluated on the two-center grid over the potential VA and the remaining

charge distribution ρB.

The evaluation of the inner integral on the one-center grid is done by a solution of the Poisson

or Helmholtz equation. The potential and the corresponding charge distribution are expanded

into spherical harmonics Ylm(Ω) on a given center A

VA(r)=∑
lm

1
r

(∫
VA(r,Ω′)Ylm(Ω′)dΩ′

)
Ylm(Ω)=∑

lm

1
r

VA,lm(r)Ylm(Ω) (4.10)

σA(r)=∑
lm

(∫
σA,lm(r,Ω′)Ylm(Ω′)dΩ′

)
Ylm(Ω)=∑

lm
σA,lm(r)Ylm(Ω), (4.11)

where r = |r| and the integration over solid angle (dΩ′) is done using Lebedev grids [108].

Inserting these expansions into Eq. 4.6 or Eq. 4.7 and comparing the components of the expansion

(spherical harmonics constitute a basis) on the left-hand side and the right-hand side, we obtain

the radial part of the differential equation

[
d2

dr2 −
(

l(l+1)
r2 +ω2

)]
VA,lm(r)=−4πrσA,lm(r) (4.12)

with following boundary conditions. In the caseω 6= 0 (Yukawa interaction), VA,lm(0)= 0, VA,lm(r →
∞) = 0. In the case ω = 0 (Coulomb interaction), VA,lm(0) = 0, VA,lm(r → ∞) = 0, if l > 0 and

VA,lm(r →∞)=p
4πqA , if l = 0. Here qA = ∫

ρA(r) dr is the total charge on a single atom A. Thus

we need to solve at the moment infinite number of two-point boundary value problems. However,

the expansions in Eqn. 4.10 and 4.11 can be truncated and the recommended cutoff angular

momenta lmax are connected to the size of Lebedev grids for the angular integrations [14]. For

the discretization of Eq. 4.12 the variable 0≤ r <∞ is mapped to the interval −1≤ x ≤ 1 using

r = rm(1+ x)/(1− x), where rm is the atomic size parameter, which can be used to further optimize

the scheme. Then the new variable x is discretized due to the Gauss-Chebyshev quadrature

points xi = cos(πzi) and zi = i/(N +1) for N radial points. The so obtained radial grid points

r i = rm(1+cos(πzi))/(1−cos(πzi)) are non-equidistantly distributed. To use the method of finite

differences we transform the equation Eq. 4.12 from the real domain r i to the computational

domain zi with equidistant point distribution. This allows to use straightforward finite differences

methods for the solution of the boundary value problem and simple cubic spline interpolation for
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the evaluation of the outer integral [14]. Given the mapping r → z(r)

r = rm
1+cos(πz)
1−cos(πz)

(4.13)

z = 1
π

arccos
(

r− rm

r+ rm

)
, (4.14)

we use the chain and product rules of differential calculus and obtain the transformed equation[
d2

dz2 +β(z)
d
dz

+γωl (z)
]

VA,lm(z)+δ(z)σA,lm(z)= 0, (4.15)

where the prefactors are defined as

β(z)=
(

π

sin(πz)
+ π

2
sin(πz)

sin2 (
π
2 z

))
(4.16)

γωl (z)=−
(

4π2l(l+1)
sin2(πz)

+ ω2π2r2
m sin2(πz)

4sin8 (
π
2 z

) )
(4.17)

δ(z)= 4π3r3
m

cos4 (
π
2 z

)
sin8 (

π
2 z

) . (4.18)

With these definitions we discretize the equation using 7-point finite difference scheme [19]

y′i =
1

12h
(−yi−3 +6yi−2 −18yi−1 +10yi +3yi+1) (4.19)

y′i =
1

12h
(−3yi−1 −10yi +18yi+1 −6yi+2 + yi+3) (4.20)

y′i =
1

60h
(3yi−2 −30yi−1 −20yi +60yi+1 −15yi+2 +2yi+3) (4.21)

y′i =
1

60h
(−2yi−3 +15yi−2 −60yi−1 +20yi +30yi+1 −3yi+2) (4.22)

y′i =
1

60h
(−yi−3 +9yi−2 −45yi−1 +45yi+1 −9yi+2 + yi+3) (4.23)

y′′i = 1
12h2 (11yi−1 −20yi +6yi+1 +4yi+2 − yi+3) (4.24)

y′′i = 1
12h2 (−yi−3 +4yi−2 +6yi−1 −20yi +11yi+1) (4.25)

y′′i = 1
12h2 (−yi−2 +16yi−1 −30yi +16yi+1 − yi+2) (4.26)

y′′i = 1
180h2 (2yi−3 −27yi−2 +270yi−1 −490yi +270yi+1 −27yi+2 +2yi+3) (4.27)

and obtain a 7-band matrix. Note, that different forms of first and second derivatives are necessary

to connect to the boundary. The resulting system of linear equations can be solved with standard

numerical libraries (for example LAPACK [5]). In this way we obtain the lm-components VA,lm(r i)

on the discrete grid. The full potential is then constructed from VA,lm(r i) using Eq. 4.10.

To carry out the remaining outer integral the values of the just obtained potential VA

on the center B are required. The angular part is known analytically through the spherical
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FA FB RAB [a0] Harris 40×110×8 60×194×11 80×302×14

ζ=2.0, 2pz ζ=1.0, 1s 0.6 0.1988 5344 0.1988 5194 0.1988 5347 0.1988 5344
1.1 0.2312 3038 0.2312 3080 0.2312 3039 0.2312 3038
1.6 0.1915 2647 0.1915 1797 0.1915 2648 0.1915 2647
2.6 0.0699 8224 0.0699 8185 0.0699 8223 0.0699 8224

ζ=2.5, 2pz ζ=1.1, 2pz 0.6 0.1726 3404 0.1726 3410 0.1726 3405 0.1726 3404
1.1 0.0666 4252 0.0666 4275 0.0666 4253 0.0666 4252
1.6 0.0605 0881 0.0605 0820 0.0605 0885 0.0605 0881
2.6 0.0696 4352 0.0696 4271 0.0696 4349 0.0696 4352

Table 4.1: Selected integrals (all in Hartree), obtained with the prototype integrator for different
grid size (denoted by (Nrad ×Nang × lmax)) and compared to the results of Harris [63].

harmonics, and the radial part is interpolated using cubic spline algorithms. With this, the

numerical evaluation of the two-center overlap integral is straightforward and we are done with

the solution.

We demonstrate the accuracy of the prototype integrator for two-center integrals of the form

I =
∫

FA(r−RA)FB(r−RB)
∫

FA(r′−RA)FB(r′−RB)
|r−r′| dr′dr (4.28)

FA(r)= (2ζ)n+1/2
p

(2n)!
|r|n−1e−ζ|r|Ylm(Ω), (4.29)

where n, l,m are main, azimuthal and magnetic quantum numbers respectively, by comparison

to the analytical integration routines, implemented for the MAPLE package [129] by Harris [63].

We use the grids recommended in ref. [14], which we denote as (Nrad ×Nang × lmax). Here Nrad is

the size of the atomic radial grid, Nang is the size of Lebedev grid and lmax is the cutoff angular

momentum. In Tab. 4.1 we present the results for two selected integrals evaluated at four distinct

interatomic distances. The convergence to the analytical result is clearly seen for increasing

grid size. For the integrals over Yukawa interaction explicit analytical results are in general not

available. The aforementioned γlr−integrals have been accurately reproduced by the integrator.

4.3 SCHEME FOR ONE-CENTER INTEGRALS

The parameters for the (LC-)DFTB are generated with respect to the pseudo-atomic basis set.

This basis set consists of Kohn-Sham orbitals of some particular atomic DFT calculation with

confinement potential (section 3.4).

The LC-DFTB requires the eigenvalues and orbitals from the atomic LC-DFT. To obtain these

quantities it is necessary to extend the atomic DFT code to include the long-range corrected

functionals. The modification of the local DFT functional to the screened analogon is rather simple

as has been described in section 3.1. On contrast, the efficient modification of the integration

routine for the evaluation of the exchange integrals over the descreened Yukawa interaction is
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more sophisticated and will be described in following. The atomic DFT code uses Slater-type

orbitals and resembles essentially the techniques from refs. [165, 166]. The implementation

requires the complete evaluation of the one- and two-electron matrices before the SCF procedure

begins. In order to include the long-range HF exchange term, we need to evaluate the exchange

supermatrix Kω
λpq,µrs for Yukawa interaction

Kω
λpq,µrs =

1
dλdµ

∑
αβ

∫ ∫
χpλα(r)χrµβ(r′)

exp(−ω|r−r′|)
|r−r′| χsµβ(r)χqλα(r′)drdr′, (4.30)

where dµ = (2µ+1) is the angular momentum degeneracy and we adopt the notation from the

references [165, 166] for convenience. 3 The molecular orbitals are expanded in terms of atom-

centered basis functions as φk(r) = φiλα(r) = ∑
p
χpλα(r)cλpi. The molecular orbital index k has

been split into the main quantum number i, angular momentum λ and magnetic quantum

number α. The basis functions χpλα(r) are defined as

χpλα(r)= Rpλ(r)Yλα(Ω) (4.31)

Rpλ(r)=
2α

nλp+ 1
2

λp√
2nλp

rnλp−1e−αλpr, (4.32)

where nλp = np+λ, r = |r| and Ω is the solid angle. We insert the definitions of the basis functions

in Eq. 4.30 and obtain

Kω
λpq,µrs =

1
dλdµ

∑
αβ

∫
Rpλ(r)Rsµ(r)Yλα(Ω)Yµβ(Ω)×

×
[∫

exp(−ω|r−r′|)
|r−r′| Rqλ(r′)Rrµ(r′)Yλα(Ω′)Yµβ(Ω′)dr′

]
︸ ︷︷ ︸

Vω
qλrµ,αβ(r)

dr. (4.33)

Note that for an atomic problem there is only one atom-centered grid and there is no need to

do space partitioning. The inner integral is obtained by the solution of a set of one-dimensional

Helmholtz equations [
d2

dr2 −
(

l(l+1)
r2 +ω2

)]
V lm,ω

qλrµ,αβ(r)=−4πrρlm
qλrµ,αβ(r) (4.34)

as already described. The density, projected on the real spherical harmonics in the case of

one-center inner integral has the simple form

ρlm
qλrµ,αβ(r)=

∫
Rqλ(r)Rrµ(r)Yλα(Ω)Yµβ(Ω)Ylm(Ω)dΩ= Rqλ(r)Rrµ(r)G(λα|µβ|lm), (4.35)

where G(λα|µβ|lm)= ∫
Ylm(Ω)Yλα(Ω)Yµβ(Ω) dΩ are the real Gaunt coefficients. We insert this

expression into Eq. 4.34 and obtain[
d2

dr2 −
(

l(l+1)
r2 +ω2

)]
V lm,ω

qλrµ,αβ(r)=−4πrRqλ(r)Rrµ(r)G(λα|µβ|lm). (4.36)

3the atomic DFT code uses the same nomenclature.
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The dependence of the solution on magnetic quantum numbers m,α,β is only through the

Gaunt coefficient on the right hand side of Eq. 4.36. We rescale the solution V lm,ω
qλrµ,αβ(r) =

V l,ω
qλrµ(r)G(λα|µβ|lm), and solve the equations

[
d2

dr2 −
(

l(l+1)
r2 +ω2

)]
V l,ω

qλrµ(r)=−4πrRqλ(r)Rrµ(r). (4.37)

This means, that we don’t need to solve the Helmholtz equations for all (l,m), but only for l ≤ lmax.

The inner integral of Eq. 4.33 takes the form

Vω
rµqλ,αβ(r,Ω)=∑

lm
r−1V l,ω

rµqλ(r)G(µβ|λα|lm)Ylm(Ω). (4.38)

Inserting this into Eq. 4.33 and performing the angular integration we arrive at

Kω
λpq,µrs =

1
dλdµ

∫
rdr Rpλ(r)Rsµ(r)

∑
l

V l,ω
rµqλ(r)

∑
αβm

G2(µβ|λα|lm) (4.39)

= 1
dλdµ

∫
rdr Rpλ(r)Rsµ(r)

∑
l

V l,ω
rµqλ(r)Gµλl . (4.40)

Each such integral requires the solution of (λ+µ)/2 Helmholtz equations Eq. 4.37 (due to the

selection rules for Gaunt coefficients [73]), construction of the inner integral Eq. 4.38 and one

radial integration Eq. 4.40.

We notice, that since the left-hand side of the Helmholtz equation Eq. 4.37 is determined

by ω and l only and does not depend on the integrand, the finite difference matrix and its

LU-decomposition can be precomputed. If we assume that a matrix A can be represented by a

product of lower triangular and upper triangular matrices A = LU, the linear problem can be

written as

Ax = (LU)x = L(Ux)= b. (4.41)

Thus the solution is performed by successive solution of two linear problems Ly= b and Ux = y,

which are easily obtained by forward/backward substitution if matrices are triangular. Thus,

provided the LU-decomposition of the finite difference matrix for a given ω and each 0< l ≤ lmax

is known, the only operations, which have to be done are the forward/backward substitutions

for a given integrand. Additionally, the integrands can be precomputed in order to reduce the

number of the exponential function evaluations.

To test the extension of the atomic DFT code to the new long-range corrected functional BNL-

Y, defined in section 3.1, we compute the total energies of beryllium, carbon, oxygen and nitrogen

atoms as a function of the range-separation parameter ω. We compare our results to the reference

calculation with NWCHEM package. The results are presented in Fig. 4.1. The dots denote the

result of the atomic DFT code with BNL-Y functional. The basis consists of 12 STO functions

per angular momentum. The solid lines denote the result, obtained on the BNL/aug-cc-pVDZ

theory level, calculated with NWCHEM. The atomic configuration in the NWCHEM calculation
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Figure 4.1: Total energies for the BNL-Y functional (section 3.1) of selected pseudo-atoms as a
function of the range-separation parameter ω, calculated with the atomic DFT code (HFATOM)
as compared to BNL/aug-cc-pVDZ level of theory, calculated with NWCHEM quantum chem-
istry package. Note, that the functional in HFATOM is implemented with Yukawa-type range
separation, while the functional in the NWCHEM uses the error-function.

is chosen in a way that the atom is spherically symmetric. For example for carbon atom the

spin orbitals of p-shell are fractionally occupied with 1/3 electrons. We observe an expectable

agreement in the DFT limit (ω→ 0) and in the HF+c limit (ω→∞). In the intermediate region

the curves deviate, although they are qualitatively similar. The deviation stems from the different

screening functions, used in both codes. NWCHEM functional uses the error-function and the

atomic DFT code the Yukawa-type range separation.

4.4 SCHEME FOR TWO-CENTER INTEGRALS

The two-center code evaluates the zeroth-order Hamiltonian and overlap matrix elements from

the basis functions φµ, atomic densities ρA and atomic potentials VA, which all are provided by
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the atomic DFT code. The Hamiltonian in standard DFTB is obtained according to

〈φµ|H[ρA +ρB]|φν〉 =
∫
φµ(r)

(
−1

2
∇2 +VA(r)+VB(r)+vxc[ρA +ρB](r)

)
φν(r)dr, (4.42)

where the potential VA(r) contains the contributions from Hartree and nuclear potentials of the

atom A. Note, that this is essentially a two-center overlap integral. The xc-potential vxc, which is

non-linear in density has to be evaluated separately on a two-center grid. So far the integrals

are simple overlap integrals on two-centers. If we include the non-local HF exchange term to the

Hamiltonian, the sum of exchange integrals (compare Eq. 3.12)

Iωx =−1
2

∑
αβ

P0
αβ(µα|αν)lr =−1

2

∑
A

∑
α∈A

nα(µα|αν)lr

=−1
2

∑
A

∑
α∈A

nα
∫
φµ(r)φα(r)

1− e−ω|r−r′|

|r−r′| φα(r′)φν(r′)drdr′ (4.43)

has to be evaluated, where nα are the orbital occupations and P0
αβ

= nαδαβ is the reference

density matrix. We note, that in general orbitals µ,α,ν are centered on different atoms. This

means, that the integral above is a three-center integral. Doing the two-center approximation,

we require µ ∈ A, ν ∈ B ⇒α ∈ A or α ∈ B. This allows us to rewrite the integral in the way, that

inner integration is performed over the same center, i.e. we perform the one-center integration (in

the same way as for atomic DFT). The basis functions φµ are the converged numerical orbitals,

which have been calculated by the atomic DFT code and have the form

φµ(r)= Rnµlµ(r)Ylµmµ
(Ω), (4.44)

where nµ is the main quantum number, lµ the angular momentum and mµ the magnetic quantum

number. The radial part Rnµlµ(r) is tabulated numerically, or can be reconstructed from the

converged molecular orbital coefficients cλpi from an atomic DFT calculation. We assume that

the radial part is tabulated. Let us further assume without loss of generality, that α ∈ B, then

Iωx =−1
2

∫
φµ(r)

∑
α

φα(r)

[∫
1− e−ω|r−r′|

|r−r′| φα(r′)φν(r′)dr′
]

dr (4.45)

=−1
2

∫
Rnµlµ(r)Yλµmµ

(Ω)
∑

nαlα

∑
mα

Rnαlα(r)Ylαmα
(Ω)×

×
[∫

1− e−ω|r−r′|

|r−r′| Rnαlα(r′)Ylαmα
(Ω′)Rnνlν(r

′)Ylνmν
(Ω′)dr′

]
dr. (4.46)

The integral in the square brackets is the one-center integral over the descreened Yukawa interac-

tion (1−exp(−ωr))/r. The value of this integral is provided by solving the radial Poisson equations

(1/r) and the Helmholtz equations (exp(−ωr))/r) and subtracting the resulting l-components of

the potentials (quantities V l,ω
rµqλ(r) in Eq. 4.38). We denote these components now as Unαlαnνlν,ω

l (r).
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The integral reads

Iωx =−1
2

∫
Rnµlµ(r)Yλµmµ

(Ω)
∑

nαlα
Rnαlα(r)

[∑
l

r−1Unαlαnνlν,ω
l (r)×

× ∑
mαm

G(lαmα|lνmν|lm)Ylm(Ω)Ylαmα
(Ω)

]
dr (4.47)

=−1
2

∫
Rnµlµ(r)Yλµmµ

(Ω)
∑

nαlα
Rnαlα(r)

[∑
l

r−1Unαlαnνlν,ω
l (r)

∑
l′m′

Yl′m′(Ω)×

× ∑
mαm

G(lαmα|lνmν|lm)G(lm|lαmα|l′m′)
]
dr (4.48)

=−1
2

∫
Rnµlµ(r)Yλµmµ

(Ω)
∑

nαlα
Rnαlα(r)×

×
[∑

l
r−1Unαlαnνlν,ω

l (r)
∑
l′m′

Yl′m′(Ω)T lνmν

lαl δlνl′δmνm′

]
dr (4.49)

=−1
2

∫
Rnµlµ(r)Yλµmµ

(Ω)
∑

nαlα
Rnαlα(r)

[∑
l

r−1Unαlαnνlν,ω
l (r)Ylνmν

(Ω)T lνmν

lαl

]
dr. (4.50)

Here we expanded the product of spherical harmonics, located at the same center Ylm(Ω)Ylαmα
(Ω)=∑

l′m′
G(lm|lαmα|l′m′)Yl′m′ (Ω) and evaluated the sum over the product of Gaunt coefficients accord-

ing to∑
m,mα

G(lαmα|lm|lνmν)G(lαmα|lm|l′m′)= (4.51)

= ∑
m,mα

∫
Ylαmα

(Ω)Ylm(Ω)Ylνmν
(Ω)Ylαmα

(Ω′)Ylm(Ω′)Yl′m′(Ω′)dΩdΩ′ (4.52)

=
∫ ∑

m
Ylm(Ω)Ylm(Ω′)

∑
mα

Ylαmα
(Ω)Ylαmα

(Ω′)Ylνmν
(Ω)Yl′m′(Ω′)dΩdΩ′ (4.53)

=
∫

2l+1
4π

Pl(x̂ · x̂′)
2lα+1

4π
Plα(x̂ · x̂′)Ylνmν

(Ω)Yl′m′(Ω′)dΩdΩ′ (4.54)

=
∫

2l+1
4π

2lα+1
4π

lα+l∑
L=|lα−l|

CL
lα,lPL(x̂ · x̂′)Ylνmν

(Ω)Yl′m′(Ω′)dΩdΩ′ (4.55)

= 2l+1
4π

2lα+1
4π

lα+l∑
L=|lα−l|

CL
lα,l

4π
2L+1

L∑
M=−L

∫
YLM(Ω)YLM(Ω′)Ylνmν

(Ω)Yl′m′(Ω′)dΩdΩ′ (4.56)

= 2l+1
4π

2lα+1
4π

lα+l∑
L=|lα−l|

CL
lα,l

4π
2L+1

L∑
M=−L

δLlνδMmν
δLl′δMm′ (4.57)

= 2l+1
4π

2lα+1
2lν+1

Clν
lα,lδlνl′δmνm′ = T lνmν

lαl δlνl′δmνm′ . (4.58)

The expansion coefficients Clν
lα,l are given by 3 j-Wigner symbols

Cλ
lα,l =

(
lσ l λ

0 0 0

)2

(2λ+1). (4.59)
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The factors T lνmν

lαl contain Gaunt coefficients, which can be precomputed and efficiently tabulated

[152, 159], evaluated using recursive algorithms [173] or directly evaluated on Lebedev grid

as the angular integral over products of spherical harmonics. In our implementation we use

the algorithm by Pinchon et al. [152] which precomputes the Gaunt coefficients up to a given

maximal angular momenta and efficiently stores them.

The integral Eq. 4.50 is a two-center overlap integral. We choose the coordinate system such

that the z−axis is along the line, which connects the two centers. We switch to the spherical

coordinates. The angular dependence of the integrand is only due to the spherical harmonics

Ylµmµ
(Ω) and Ylνmν

(Ω), which are located at different centers. The choice of the coordinate system

allows to perform the φ−integration analytically. The real spherical harmonics are defined as

Y`m =


1p
2

(
Y m
`

+ (−1)m Y−m
`

)=p
2N(`,m)Pm

`
(cosθ)cosmϕ if m > 0

Y 0
`

if m = 0
1

i
p

2

(
Y−m
`

− (−1)m Y m
`

)=p
2N(`,|m|)P |m|

`
(cosθ)sin |m|ϕ if m < 0.

(4.60)

Let a,b ≥ 0, then we recall

∫ 2π

0
dφ sin(aφ)sin(bφ)= 1

2

∫ 2π

0
dφ

(
cos

[
(a−b)φ

]−cos
[
(a+b)φ

])=
π for a = b

0 otherwise
(4.61)

∫ 2π

0
dφ cos(aφ)sin(bφ)= 1

2

∫ 2π

0
dφ

(
sin

[
(a+b)φ

]−sin
[
(a−b)φ

])= 0 (4.62)

∫ 2π

0
dφ cos(aφ)cos(bφ)= 1

2

∫ 2π

0
dφ

(
cos

[
(a+b)φ

]+cos
[
(a−b)φ

])=
π for a = b

0 otherwise.
(4.63)

Thus for the product of two spherical harmonics we obtain

∫ 2π

0
Yl1m1(θ,φ)Yl2m2(θ′,φ) dφ= Ȳl1m1(θ)Ȳl2m2(θ′)×


2π m1 = m2 = 0

π m1 = m2 6= 0

0 else,

(4.64)

where the Ȳl1m1(θ)=p
2N(`,m)P

|m|
`

(cosθ). This gives the final expression for the integral

Iωx =−1
2

∫
Rnµlµ(r)Ȳlµmµ

(θ)
∑

nαlα
Rnαlα(r)

∑
l

Unαlαnνlν,ω
l (r)

r
Ȳlνmµ

(θ)T lνmµ

lαl r2 sinθdrdθ×
2π mµ = 0

π mµ 6= 0

(4.65)

We notice, that the integral vanishes unless mµ = mν. It can be numerically evaluated together

with other contributions in Eq. 4.42 on two atom-centered grids.
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5
PARAMETRIZATION OF REPULSIVE POTENTIALS FOR

HYDROCARBONS

In section 3.2 the exact expression of the repulsive energy in the LC-DFTB method has been

defined. It can be in principle directly evaluated within the two-center approximation using

the representation in Eq. 3.13. However, the usual way of obtaining the repulsive energy for a

given system is to approximate it by a sum of fast decaying pair-potentials

Erep ≈
atoms∑

AB
VAB(RAB). (5.1)

The sum in this expression runs over all atoms. The potentials for each pair of atomic species

(type of the atom) are determined by a fit to a reference theory, which is usually the DFT. At the

moment successful parametrizations of the repulsive potential for the standard DFTB method

for a variety of elements exists [42, 52, 59, 104, 139, 182].

In following we describe the fit procedure and apply it to the LC-DFTB method for the carbon

and hydrogen species. It should be noted, that the applicability of this approach to the LC-DFTB

has been already verified in ref. [137].

5.1 WHY IS THE NEW PARAMETRIZATION NEEDED?

The repulsive energy in LC-DFTB method consists not only of nuclei-nuclei repulsion, but

contains contributions from the electronic energy as can be seen in Eq. 5.2. The new term due to

the long-range HF exchange lowers the energy if the range-separation parameter is increased. At

the same time the exact repulsive energy

Erep =Eω
xc,sr[ρ0]−∑

µν

P0
µνvxc

µν[P0]− 1
2

∑
µναβ

P0
µνP0

αβ(µν|αβ)+ 1
4

∑
µναβ

P0
µνP0

αβ(µα|βν)lr +ENN , (5.2)
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Figure 5.1: The schematic geometry of benzene molecule. Marked are the C-C and C-H bond
lengths, as obtained from LC-DFTB with mio-1-1 repulsive (left), standard DFTB (center) and
DFT on the BNL/6-311G* level of theory (right). We clearly see a considerable shrinking effect due
to the too weak repulsive potentials of the mio-1-1 parameter set if combined with the LC-DFTB.

includes the corresponding repulsive counter-term, evaluated at the zeroth-order density matrix.

This suggests, that for the new theory the approximate repulsive pair-potentials Eq. 5.1 should be

reparametrized. Specifically, they should be made more repulsive than the respective potentials

from the standard DFTB method. The expectation is that the standard DFTB repulsive potential,

which has been fitted to the hybrid B3LYP functional, will be too weak and the geometries will

shrink. The question is how large is this effect and whether the existing repulsive potentials can

still be used?

We optimized the geometries for a set of hydrocarbons (the list can be found in Tab. D.1) with

the LC-DFTB method and standard mio-1-1 repulsive potential. The bond lengths have been

compared to the values, obtained from the standard DFTB, the local PBE/6-311G*, the long-range

corrected BNL/6-311G* and to experimental data. We found a systematic underestimation of

bond lengths by the LC-DFTB with mio-1-1 repulsive potentials. The mean absolute error ranges

from 5.0 pm (with respect to experiment), to 7.1 pm (with respect to the BNL/6-311G*). As an

example, in Fig 5.1 we show the schematic geometries of benzene molecule, where we mark the

carbon-carbon and carbon-hydrogen bond lengths, as obtained by the LC-DFTB method (left),

DFTB (middle) and BNL/6-311G* (right) . The LC-DFTB underestimates the carbon-carbon

(carbon-hydrogen) bond length by 6.4 (6.6) pm with respect to the BNL/6-311G* and by 4.8 (4.3)

pm with respect to the standard DFTB. Thus we conclude that the repulsive potential should be

adjusted (made more repulsive) for the new electronic energy.

5.2 REPULSIVE POTENTIAL FIT PROCEDURE

In following we describe the procedure of the repulsive potential parametrization as it is usually

performed in the standard DFTB. The total LC-DFTB energy Eq. 3.36 can be written in terms of

the total electronic energy Eelec
LC-DFTB and the aforementioned sum of pair-potentials VAB(R)

Etotal
LC-DFTB = Eelec

LC-DFTB +
atoms∑

AB
VAB(RAB). (5.3)
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We want to fit the pair-potentials in such a way, that the total LC-DFTB energy Etotal
LC-DFTB

approximately reproduces a Born-Oppenheimer potential energy surface of some reference

systems at a specific theory level. We then assume, that such pair-potentials are transferable and

can be applied to all other systems. The reasonable way to do this is to find a path in the space of

geometric configurations of some suitable physical system, along which only the pair-potential

which we are interested in, or a multiple of it, is changed together with the electronic energy.

Practically this can be achieved by partitioning the system into fragments, and stretching them

along the appropriate direction. Once the repulsive pair-potential V (R) is isolated due to this

procedure, we fit the total LC-DFTB energy to the reference of our choice, usually a DFT total

energy. The prescription can be formulated as follows

EDFT(R)= Eelec
LC-DFTB(R)+nV (R)+C, (5.4)

where R is the stretch coordinate (distance between the fragments, which are pulled apart),

n the number of the repulsive potentials of the same type, which are simultaneously varied

upon stretching (for example of C-H bonds in CH4 molecule, as described in section 5.3) and

C is some constant. From lim
R→∞

V (R) = 0 it follows that C = lim
R→∞

(EDFT(R)−Eelec
LC-DFTB(R)). The

constant C contains contributions due to the pair-potentials, which do not depend on the stretch

coordinate, and other contributions from the difference of the total DFT and the electronic LC-

DFTB energies. The direct evaluation of this constant is usually not possible, since for example

not all pair-potentials are available during the parametrization. For this reason the fit procedure

is carried out in two steps. First, we vary the stretching parameter R in some suitable interval

and calculate the difference of the total DFT energy and the electronic part of the LC-DFTB

energy

∆E(R)= 1
n

[
EDFT(R)−Eelec

LC-DFTB(R)
]

. (5.5)

Then, the difference is shifted, such that it decays to zero for R →∞. Practically this happens at

some finite cutoff distance. This is necessary to avoid the superposition of repulsive potentials at

long-range. The shifted energy difference curve is the repulsive potential, which we are interested

in. To represent the potential, the spline interpolation is performed and the resulting spline is

attached to the corresponding Slater-Koster file in a usual way.

At this point it is worth mentioning, that the total (LC-)DFTB energy, obtained in such a way,

is not even nearly the same as the total energy from the first principles methods. However, the

absolute value of the total energy is usually of no interest. The energy differences from DFTB

are reasonable, as can be seen from benchmarks for atomization energies and reaction energies

[35, 41–44].

It should be also noted, that the parametrization for a set of N atomic species is a hard

optimization task. Recently the automatic parametrization became possible [21]. Thus it is

tempting to apply these tools to the LC-DFTB Hamiltonian.
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This mio-1-1

Molecule min [Å] max [Å] min [Å] max [Å] n Bond type

H2 0.54 0.99 0.55 0.97 1 H−H
CH4 0.76 1.57 n/a n/a 4 C−H
C2H2 0.88 1.24 0.90 1.26 1 C≡C
C2H4 1.24 1.42 1.26 1.43 1 C=C
C2H6 1.42 1.99 1.43 3.02 1 C−C

Table 5.1: Interval limits [min,max], used for the parametrization of the repulsive potentials for
carbon and hydrogen species for the LC-DFTB theory with ω= 0.3a−1

0 (this). Additionally the
corresponding parameters for the mio-1-1 parametrization are given.

5.3 PARAMETRIZATION AND TEST

The parametrization of LC-DFTB repulsive potentials (ω = 0.3a−1
0 ) for hydrogen and carbon

species has been performed using B3LYP/6-311G* level of theory for the reference fit. This

choice and the selection of reference molecules, parallels that of the standard DFTB mio-1-1 set

parametrization [42]. The hydrogen-hydrogen repulsive potential is fitted to the H2 molecule,

which is stretched along it’s symmetry axis. For the hydrogen-carbon repulsive potential the

model system is the methane molecule CH4. It contains four symmetric C-H bonds, which are

then simultaneously stretched. Note, that it is necessary to take the factor n = 4 in Eq. 5.5

into account. Finally, the repulsive potential for the carbon-carbon interaction is fitted to the

three molecules with different type of carbon-carbon bond in different intervals. These intervals

are chosen such that the corresponding typical bond length is included into the interval. The

acetylene (C2H2) accounts for the triple bond ( ≈ 120 pm), ethylene (C2H4) for double bond (≈
132 pm) and ethane (C2H6) for the single bond (≈ 150 pm). In the inset of Fig. 5.2 the shifted

energy differences as a function of interatomic distance for all three situations are plotted. By

smooth connection (shift upwards) of these pieces, the resulting carbon-carbon repulsive potential

curve emerges. All reference geometries have been optimized on the B3LYP/6-311G* level. The

stretching was applied to the considered bond only. No additional geometry relaxation (e.g. on

methyl groups of C2H6) have been done.

We summarize the interval limits, in which the respective bond type has been parametrized

in Tab. 5.1. Compared to the original mio-1-1 set, the upper limit for the single bond interval

of the carbon-carbon interaction is significantly different and is 1.99 Å instead of 3.02 Å. The

parametrization with the mio-1-1 value of 3.02 Å (we denote it as S1) resulted in very large C-C

bond lengths ( up to 170 pm for single C-C bonds in trans-polyacetylene chains). Moreover, the

single bond on the reference structure (ethane) was not reproduced. The error was roughly 1 pm,

which is too large. Shifting the LC-DFTB curve S1 down we found the limit of 1.99 Å to give the

best results in terms of bond lengths of the reference systems. In this case the whole repulsive

curve is shifted down by 0.071167 Hartree. This shifted curve is cut at it’s intersection point
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Figure 5.2: The C-C repulsive potentials S1 and S2 as a function of interatomic distance (see
main text). The spline S2 has been obtained by shifting the S1 and cutting it at the point, where
it crosses the x-axis. The C-C repulsive for the standard DFTB is plotted for comparison. In the
inset the separate repulsives for distinct bond types and the combined repulsive are depicted.

with the x-axis and is denoted as S2. We plot both curves S1 and S2 in the main part of Fig. 5.2.

Additionally we plot the combined C-C repulsive potential, which we obtain for the standard

DFTB theory. For this case we used the same intervals as for S1 parametrization (the upper limit

of single bond set to 3.02 Å as in mio-1-1 set). This curve is expected to be close to that of the

original mio-1-1 fit. The DFTB repulsive potential seems to decay sharper than the S1 and S2

curves. We observe also, that it is in the whole range weaker than the S1 repulsive potential. The

shifted curve (S2) is still more repulsive in the interval between 0 and 2.89 a0 (≈ 150 pm) than

the DFTB potential. In the region of approx 2.89 a0 to the 3.76 a0 (the cutoff value) it is, however,

less repulsive than the DFTB potential. The general impression is, that the S1 curve does not

decay fast enough. This leads to the repulsive potential, which is too strong. However, as will be

shown in following the shifted S2 curve constitutes a reasonable parametrization.

The bond lengths and angles for the reference systems, as obtained from the geometry relax-

ation with the LC-DFTB with the new repulsive potential parametrization, are summarized in

the tail of Tab. D.1. In addition, we provide the values from experiment [65, 115], standard DFTB

and first principles B3LYP/6-311G* and BNL/6-311G* levels of theory. The new parametrization

(curve S2) reproduces the bond lengths and angles of hydrogen molecule and methane exactly.

For the acetylene, ethylene and ethane we found deviations in C-H bonds (maximal 2.2 pm) and

angles (maximal 0.2◦). The carbon-carbon bond length for acetylene and ethane is reproduced
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Exp. LC-DFTB DFTB B3LYP/6-311G* BNL/6-311G*

Exp. - 0.016 0.010 0.009 0.021
LC-DFTB 1.5 - 0.016 0.018 0.012
DFTB 1.3 0.5 - 0.010 0.023
B3LYP/6-311G* 1.5 0.4 0.5 - 0.026
BNL/6-311G* 1.5 0.5 0.4 0.3 -

Table 5.2: Mean absolute error for bond lengths in [Å] (upper triangle) and angles in [deg] (lower
triangle) for the hydrocarbon benchmark set, obtained from different theories and experiment.
Experimental values are the average of refs. [65, 115].

exactly, while for the ethane molecule the carbon bond length is overestimated by 0.1 pm. It can

be in principle cured by sampling the energy differences as a function of interatomic distance on

a finer grid and further shifting the potential curve. For this first fit we accept this error.

The vibrational frequencies for all reference molecules, but hydrogen 1 as obtained by LC-

DFTB, DFTB, B3LYP/6-311G* and BNL/6-311G* are summarized in Tab. D.2. We find the mean

absolute error (MAE) for the LC-DFTB of 108 cm−1 and the mean signed error (MSE) of 106

cm−1 with respect to the experimental data [115]. Especially large relative errors of 10-17%

are found for C-C stretch modes. Similar behavior has been observed also for standard DFTB

[41]. Compared to the LC-DFTB, the MAE in vibrational frequencies from DFTB (51 cm−1),

B3LYP/6-311G* (64 cm−1) and BNL/6-311G* (45 cm−1) are a factor of 2 smaller.

Finally, we benchmark the bond lengths and angles on a set of selected hydrocarbons. The

detailed results for LC-DFTB, standard DFTB, B3LYP/6-311G* and BNL/6-311G* as well as

corresponding experimental values [65, 115] are summarized in Tab. D.1 of the appendix D. The

mean absolute errors for bond lengths (upper triangle) and angles (lower triangle) of this set

for all theories are presented in Tab. 5.2. Note, that dihedral angle of biphenyl molecule was

not included into statistics. With respect to the experiment all theories show the MAE in bond

angles below 2◦. The bond lengths for LC-DFTB with respect to the experiment show MAE of 1.6

pm. This is slightly worse than the results of DFTB and B3LYP/6-311G*, but better than the

BNL/6-311G* result. Inspection of the data in Tab. D.1 reveals, that the LC-DFTB shows the

same tendency of overestimation of the bond lengths as the BNL/6-311G*. From the qualitative

point, only the LC-DFTB result for the isobutane molecule was conspicuous. In contrast to the

DFTB and first principles methods, it shows the same HCH angles on methyl groups. To conclude,

the overall performance of the LC-DFTB with respect to the geometries is worse than that of

DFTB and B3LYP/6-311G*, but shows similar errors as the long-range corrected BNL/6-311G*

theory. Since the MAE in bond lengths and angles of the benchmark set for the LC-DFTB with

the new parametrization are below 2 pm and 2◦ respectively, we consider this fit as useful.

1 For the hydrogen molecule the LC-DFTB method gives the value 4394.8 cm−1, which compared to the experi-
mental value 4161.2 cm−1 [37] gives an absolute error of 233.6 cm−1 and relative error of 5.6%.
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6
SUMMARY

Based on the work of Niehaus and Della Sala [137], we extended the standard DFTB method

to the important class of long-range corrected hybrid exchange-correlation functionals.

The extension required the modification of the atomic DFT code and the two-center code to

include the long-range corrected functionals. Both programs constitute an important part of the

parametrization toolkit of the DFTB method. A long-range corrected functional with the specific

range-separation function essentially consists of the screened local DFT exchange, standard

DFT correlation functional and the long-range Hartree-Fock exchange term (section 3.1). The

introduction of screening factor in the local DFT functional is, apart from possible numerical

issues due to the particular implementation, unproblematic. At the same time, efficient evaluation

of the long-range Hartree-Fock exchange contribution in the implementations, based on the Slater-

type orbitals, is not straightforward.

The chapter 4 was dedicated to this problem. We extended the numerical integration method

for two-electron integrals over Coulomb interaction [13, 18] to the case of Yukawa interaction.

Further, we adopted this algorithm for the atomic DFT code, which requires the evaluation of

one-center integrals and for the two-center code, which requires two-center integrals. It should be

mentioned, that the actual DFTB calculation requires no run-time integral evaluation. However,

the computational performance of the parametrization tools is crucial if the optimization of

parameters, such as confinement radii (section 3.4) is necessary. Our problem-specific extensions

do not considerably increase the execution times of atomic DFT and two-center codes. With the

extended parametrization tools for the specific long-range corrected functional, defined in section

3.1, we generated the parameters for the electronic part of the Hamiltonian, which includes the

elements C,N,O,H and S. The parametrization of the DFTB method, based on the long-range

corrected functional (section 3.1) is called LC-DFTB.
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CHAPTER 6. SUMMARY

The zeroth-order LC-DFTB, which by design has the same computational performance as

the standard DFTB method turned out to be not useful. Specifically, we did not observe the

correction of the HOMO eigenvalue towards higher absolute values, which would indicate the

reduction of the delocalization problem and is characteristic for the long-range corrected DFT. It

turns out, that the choice of the reference density matrix as the superposition of atomic density

matrices, which perfectly works in the standard zeroth-order DFTB, is insufficient if the long-

range Hartree-Fock exchange term is present. We found, that this problem is also present in the

first-principles methods if the initial guess is taken to be the superposition of atomic densities

and only one diagonalization is performed. For this reason we conclude that the self-consistent

solution is indispensable.

In order to ensure the compatibility with the standard DFTB, which should emerge as the

limit ω→ 0 from the LC-DFTB method, the approximations, which are usually used in the

so called self-consistent charge extension of the zeroth-order DFTB, have been applied also

to the LC-DFTB. In contrast to the standard DFTB, the self-consistency in the LC-DFTB is

achieved with respect to the density matrix and not to the Mulliken charges. The two-electron

integrals are approximated by two-parameter γ-integrals. In the new method there are two kinds

of γ−integrals. The full-range integral, known from the standard DFTB accounts for Hartree

potential and the linearized exchange-correlation potential. The long-range integral is new and

accounts for the long-range HF exchange term. We were able to derive an analytical formula for

the long-range γ−integral in the way it is done for standard DFTB (section 3.7 and appendix A).

The parameters for the γ-integrals (decay constants τ) are fixed according to the condition that

the Hubbard derivatives U, obtained from a reference atomic LC-DFT calculation and that of

an atomic LC-DFTB calculation should be equal. Because of the exact exchange term the usual

relation τ = 3.2U is not valid anymore (section 3.8). The correction has been proposed, which

requires the solution of Eq. 3.52 for τ. A possible numerical solution algorithm is described in

appendix C.

The inclusion of the long-range HF exchange term into the Hamiltonian and energy expres-

sions of the LC-DFTB method results in the increased computational requirements. We proposed

the algorithms for the evaluation of the HF exchange part, which scale quadratically with the

basis size. The thresholding algorithm (section 3.9.1) is the adaptation of the direct SCF tech-

niques, known from the first principles approaches. It omits the evaluation of the contributions

to the Hamiltonian which are not significant according to given cutoff criteria. The reduction in

the computational cost by the factor of 2-3 is achieved, while keeping the mean absolute error in

eigenvalues below 10−6 Ha. Such an error is acceptable for practical calculations. The neighbor

list-based algorithm (section 3.9.2) has been formulated, since the implementation of the DFTB+

code, which will be extended to include the LC-DFTB method, is entirely based on the neighbor

list concept.

Finally, we extended the algorithms for the evaluation of energy gradients with respect
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to the nuclear positions (section 3.10). This allows to perform the geometry relaxation in the

LC-DFTB method and is important for molecular dynamics simulations. The adjustment of the

repulsive potentials for the case of hydrogen and carbon has been described in chapter 5. The

LC-DFTB with this parametrization of the repulsive potentials performed well with respect to

the geometries of selected hydrocarbons. The MAE error in bond lengths of 0.016 Å with respect

to the experiment can be considered as acceptable. The vibrational frequencies of the reference

molecules showed MAE of ≈ 108 cm−1 which is larger than the DFTB error by factor of 2. This

attempt reveals the importance of automatic repulsive parametrization techniques, since the

parameters of the repulsive fit procedure, used for the standard DFTB seem to be not the optimal

choice for the LC-DFTB method.

The predictive power of the new method will be assessed in the second part II of this thesis

on a series of typical problems.
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7
QUASI-PARTICLE ENERGIES FROM LC-DFTB

The long-range corrected functionals have been shown to reduce the delocalization problem

(chapter 2). The key quantity in this respect is the linearity condition, which implies that

the HOMO eigenvalue from a LC-DFT calculation should be equal up to a sign to the ionization

potential of the system, which is also defined as the difference of the total ground state energy of

the neutral system and the total energy of it’s cation. This condition can be seen as a measure for

the reduction of the delocalization problem. For the LC-DFT a series of studies in this context have

been done [34, 91, 99, 100, 103, 160]. The general finding is that the LC-DFT provides the HOMO

eigenvalues, which are quite close to the experimental values. Moreover, the HOMO-LUMO gaps

approximate the experimental fundamental gaps with remarkable accuracy. For this reason the

assessment of the eigenvalue spectrum of the LC-DFTB is important for it’s characterization.

We want to compare the eigenvalue spectrum, especially the HOMO and LUMO eigenvalues as

calculated by the LC-DFTB method to the experimental data (where it is available), standard

DFTB method, DFT with local, global hybrid and long-range corrected xc-functionals. For the

benchmark we choose a set of 35 organic molecules, which contain the elements H,C,N,O,S. For

all these molecules the experimental gas-phase ion energetics data (specifically the ionization

potentials) is available at the NIST database [115], which we take as the reference. The set

contains among others the photovoltaically relevant molecules, studied in refs. [20, 160] with

the GW method and the optimally tuned LC-DFT. In addition, the important series of polyacene

oligomers from benzene to hexacene is included. The structural formulas of these molecules are

summarized in Fig. 7.1 We begin with ionization potentials in section 7.1. The HOMO-LUMO

gaps for this benchmark set are discussed in section 7.2. Inspired by numerous studies on the

photoemission spectra from the LC-DFT, we discuss the LC-DFTB eigenvalue spectrum for

pentacene and the perylene-3,4,9,10-tetracarboxylic-dianhydride (PTCDA) molecule in section
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CHAPTER 7. QUASI-PARTICLE ENERGIES FROM LC-DFTB

Molecule Exp. PBE/cc-pVTZ B3LYP/cc-pVTZ BNL/3-21G BNL/cc-pVDZ BNL/cc-pVTZ LC-DFTB DFTB

Fluorene 7.91 5.40 7.02 7.68 7.81 7.97 8.08 5.89
PTCDA 8.20 6.30 6.88 7.84 8.05 8.32 8.46 6.41
C60 7.60 5.80 6.35 8.01 7.83 8.02 7.80 5.85
H2P 6.90 4.97 5.48 6.31 6.62 6.85 6.79 5.16
H2TPP 6.42 4.64 5.07 5.83 6.10 6.30 6.32 4.91
H2Pc 6.41 4.98 5.27 6.17 6.15 6.32 6.12 4.95
Benzothiazole 8.80 5.94 6.66 8.36 8.42 8.62 8.46 6.24
Benzothiadiazole 9.00 6.10 6.82 8.44 8.55 8.79 8.66 6.50
Thiadiazole 10.10 6.83 7.69 9.70 9.56 9.76 8.75 6.47
Thiophene 8.86 5.79 6.58 8.54 8.58 8.79 8.76 6.24
2-Thiophene 7.75 5.00 5.66 7.40 7.43 7.62 7.85 5.52
3-Thiophene 7.43 4.70 5.29 6.92 6.94 7.12 7.40 5.23
5-Thiophene 7.11 4.47 4.99 6.53 6.54 6.71 6.79 5.00
1-Acene 9.24 6.29 7.04 8.89 9.04 9.21 9.23 6.69
2-Acene 8.14 5.44 6.09 7.70 7.87 8.04 8.22 5.98
3-Acene 7.44 4.94 5.50 6.95 7.12 7.29 7.55 5.52
4-Acene 6.97 4.61 5.12 6.44 6.62 6.78 7.10 5.22
5-Acene 6.63 4.38 4.85 6.08 6.26 6.42 6.79 5.02
6-Acene 6.40 4.23 4.66 5.82 6.00 6.15 6.57 4.88
Perylene 6.96 4.70 5.20 6.56 6.71 6.86 7.17 5.32
Coronene 7.29 5.21 5.74 7.11 7.24 7.39 7.63 5.71
NTCDA 9.67 6.84 8.04 9.20 9.42 9.73 9.33 6.79
Methane 12.61 9.43 10.76 12.62 12.74 12.90 11.79 9.14
Pyridine 9.26 5.77 7.09 8.23 8.78 9.06 8.39 6.21
Cyclopropene 9.67 5.94 6.86 8.74 8.86 9.03 8.74 6.29
Ketene 9.62 5.86 6.90 8.20 8.63 8.98 8.46 6.41
Dimetylether 10.03 5.63 7.06 7.98 8.64 9.02 8.24 5.89
Dimethylsulfide 8.69 5.05 6.06 7.92 7.90 8.13 7.99 5.69
Formaldehyde 10.88 6.17 7.56 8.61 9.02 9.41 8.61 6.36
Pyrene 7.43 5.06 5.61 7.00 7.17 7.33 7.56 5.59
1,3-Butadiene 9.07 5.79 6.55 8.31 8.54 8.73 8.97 6.44
Propene 9.73 6.14 7.04 8.94 9.14 9.33 9.40 6.78
Pyridazine 8.74 5.24 6.61 7.55 8.19 8.53 7.89 5.72
Pyrimidine 9.33 5.73 7.04 8.27 8.74 9.05 8.28 6.10
Pyrazine 9.28 5.71 7.01 8.10 8.62 8.94 7.96 5.84

Table 7.1: The negative of the HOMO eigenvalue for different theories compared to the experi-
mental ionization potential. All energies in eV.

7.3. Finally, the computational performance with respect to the high level theories is compared in

section 7.5. The results of this chapter have been published in ref. [119].

7.1 IONIZATION POTENTIALS

We compare the negative of the HOMO eigenvalues from the LC-DFTB, standard DFTB and

first principles theories with local xc-functional (PBE/cc-pVTZ) [146], the hybrid functional

B3LYP [15, 109, 185, 197] (B3LYP/cc-pVTZ) and the long-range corrected BNL functional with

small basis set (BNL/3-21G), medium basis set (BNL/cc-pVTZ) and large basis set (BNL/cc-

pVTZ). The latter basis set, the correlation-consistent polarized valence-only triple zeta basis

set [39] is usually recommended for practical high quality calculations, whereas its double

zeta variant cc-pVDZ is often used for preoptimization. The smaller basis set 3-21G and cc-

pVDZ are included to track the basis set effects. The BNL functional is similar to that, which
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Figure 7.1: The structural formulas of the benchmark set of 35 organic molecules.
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Figure 7.2: The deviation of the HOMO eigenvalue from the experimental ionization potential for
the 35 molecule benchmark set for different theories.

has been used for the parametrization of LC-DFTB (section 3.1). However, it uses the error-

function as the range-separation function and a fraction of 90% of LYP correlation energy [109]

EBNL
xc = ELDA

sr,x +0.9ELYP
c +Eω,HF

x,lr [116].

The geometries for all calculations in this benchmark, unless stated otherwise, have been

optimized on the DFTB level with the mio-1-1 parameter set [42, 139]. This procedure is somewhat

arbitrary, although quite common. It is based on the assumption, that the ground state geometry

from other theory level will not impose a considerable deviation of the electronic ground state as

compared to the native ground state geometry. Because of this, in principle, one could choose the

first-principles geometries as well. The particular motivation for the choice of DFTB as geometry

optimization level for this study is the computational efficiency of the method on the one hand

and it’s ability to give useful geometries on the other. We additionally note, that the DFTB

geometry is not native to the LC-DFTB. For this reason this choice of geometry does not privilege

the LC-DFTB method. All first-principles calculations have been performed using NWCHEM

package, with it’s default settings, unless convergence issues have been observed. In such case

the symmetry option has been turned off.

The deviation ∆ = |εHOMO| − |IPexp| is presented in Fig 7.2 for all theories. The numerical

values for all compounds are summarized in Tab. 7.1. We observe a better agreement of the

LC-DFTB with experiment, compared to the standard DFTB, PBE and B3LYP. The mean absolute
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7.2. FUNDAMENTAL GAPS

error for LC-DFTB is 0.50 eV compared to BNL/3-21G (0.67 eV), BNL/cc-pVDZ (0.47 eV), and

BNL/cc-pVTZ (0.29 eV). The deviations for the local and hybrid functionals on the other hand are

much larger: B3LYP/cc-pVTZ (2.04 eV), PBE/cc-pVTZ (2.87 eV), DFTB (2.50 eV).

Despite a quite satisfying overall picture provided by the LC-DFTB method, there are some

remarkable outliers. We observe deviations of more than 0.5 eV for small compounds, which

contain nitrogen (pyrazine, pyrimidine, pyridazine, pyridine), oxygen (ketene, dimethylether,

formaldehyde), sulfur (thiadiazole and dimethylsulfide) as well as simple hydrocarbons (methane,

cyclopropene). It should, however, be noted, that BNL/cc-pVTZ also shows errors larger 0.5 eV

for compounds cyclopropene, ketene, dimethylether, dimethylsulfide, formaldehyde. Excluding

problematic cases, where the deviation of LC-DFTB results from experiment is larger than 0.5

eV, we obtain for the remaining 25 compounds the MAE of 0.18 eV, compared to 0.17 eV for

BNL/cc-pVTZ for the same subset.

For the problematic cases, where the deviation from both experiment and theory is large, the

deviations seem to be an effect of the minimal basis set, which is used in the LC-DFTB method.

The basis set of the LC-DFTB method has not been optimized with respect to the compression

radii and the standard compression of mio-1-1 set has been used for all parametrizations. In

addition, the minimal basis sets in general might not provide enough variational flexibility to

describe some chemical environments. The results for the BNL functional at the 3-21G, cc-pVDZ

and cc-pVTZ level support this assumption. We find, however, one exception. The BNL/3-21G and

BNL/cc-pVTZ results for thiadiazole are nearly the same and underestimate the experimental

IP by roughly 0.4 eV, while the LC-DFTB deviates strongly (≈ 1.4 eV) from the experiment. In

general one can conclude, that the results of the LC-DFTB method are comparable to LC-DFT

with small double-zeta basis (3-21G). The new scheme clearly outperforms first principles DFT

calculations based on the PBE and B3LYP functionals as well as the standard DFTB method

for the description of ionization potentials. The results of this section suggest that the LC-DFTB

reduces the delocalization problem to a considerable extent.

7.2 FUNDAMENTAL GAPS

We investigate now the HOMO-LUMO gap from the LC-DFTB. This quantity if obtained from

a single ground state calculation is an approximation to the fundamental gap of the system.

The fundamental gap can be in principle obtained exactly from two ground state calculations

with N and N +1 electrons. We note, however, that the present implementation of the LC-DFTB

method is valid only for closed-shell systems. Thus a meaningful result for an anion can not

be obtained and the extension to the spin-unrestricted formalism is necessary. Nevertheless,

the assessment of the LC-DFTB HOMO-LUMO gap from a ground state calculation on neutral

closed-shell molecules is an important first step for the characterization of the ability of the

LC-DFTB method to predict reliable fundamental gaps.

While the experimental ionization potentials are usually available, the experimental data
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Figure 7.3: The deviation of the HOMO-LUMO gap from the BNL/cc-pVTZ reference for the 35
molecule benchmark set for different theories.

for the electron affinities is sparse. The theoretical reference method of choice in this case is

usually a GW variant. It is, however, usually much more expensive than a hybrid DFT. For this

particular reason we use the BNL/cc-pVTZ results as reference. They are the most accurate in

the benchmark. Moreover, it has been mentioned in the literature, that the long-range corrected

functionals (like BNL) usually provide HOMO-LUMO gaps, which are good estimates to the

experimental fundamental gaps.

We present the deviations from the reference of the HOMO-LUMO gaps obtained from LC-

DFTB, DFTB, PBE/cc-pVTZ, B3LYP/cc-pVTZ, BNL/3-21G and BNL/cc-pVDZ theory levels in Fig.

7.3 and summarize the numerical values in Tab. 7.2. The MAE deviation for LC-DFTB is 1.36

eV, compared to DFTB (5.06 eV), BNL/3-21G (0.41 eV), BNL/cc-pVDZ (0.15 eV), PBE/cc-pVTZ

(5.29 eV), and B3LYP/cc-pVTZ (3.92 eV). For LC-DFTB, we find remarkably large deviations

for the case of methane and dimethylether of 12.30 eV and 8.66 eV respectively. On the other

hand, if we compare the DFTB result to the PBE, we find a remarkable agreement again up

to methane, ketene and dimethylether. The general agreement of the DFTB with PBE HOMO-

LUMO gap is the manifestation of the fact, that the DFTB has been optimized with respect to

PBE. However, the three mentioned compounds seem to be a problem already at the DFTB level.

The qualitatively similar, although much smaller deviations of 3.58 eV and 1.57 eV for methane

and dimethylether can be also seen for BNL/3-21G. In view of these observations we assign these
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7.3. PHOTOEMISSION SPECTRUM

Molecule BNL/3-21G BNL/cc-pVDZ BNL/cc-pVTZ B3LYP/cc-pVTZ PBE/cc-pVTZ LC-DFTB DFTB

Fluorene 9.43 9.18 9.06 4.89 3.61 8.59 3.74
PTCDA 5.74 5.64 5.59 2.22 1.29 5.08 1.20
C60 6.41 6.20 6.15 2.61 1.60 5.80 1.80
H2P 5.85 5.92 5.91 2.83 1.88 5.24 1.68
H2TPP 5.31 5.33 5.32 2.44 1.57 4.74 1.44
H2Pc 5.07 4.89 4.80 2.11 1.40 4.38 1.31
Benzothiazole 9.83 9.65 9.55 5.26 3.86 7.91 3.68
Benzothiadiazole 8.24 8.13 8.04 3.77 2.51 6.64 2.49
Thiadiazole 10.64 10.30 10.10 5.43 3.89 7.72 3.25
Thiophene 11.01 10.77 10.62 5.95 4.49 8.45 4.02
2-Thiophene 8.55 8.40 8.29 4.08 2.84 6.92 2.66
3-Thiophene 7.49 7.37 7.28 3.30 2.19 6.15 2.10
5-Thiophene 6.58 6.49 6.42 2.63 1.65 5.48 1.63
1-Acene 11.69 11.36 11.20 6.63 5.14 10.80 5.28
2-Acene 9.19 8.99 8.90 4.71 3.40 8.31 3.49
3-Acene 7.58 7.44 7.37 3.48 2.31 6.80 2.44
4-Acene 6.50 6.38 6.33 2.66 1.60 5.81 1.78
5-Acene 5.73 5.62 5.58 2.09 1.12 5.14 1.33
6-Acene 5.16 5.06 5.02 1.68 0.76 4.65 1.02
Perylene 6.75 6.62 6.55 2.89 1.84 6.05 2.02
Coronene 7.83 7.67 7.62 3.98 2.88 7.11 2.88
NTCDA 7.23 7.11 7.05 3.20 1.59 6.06 1.47
Methane 19.42 16.98 15.84 11.85 10.16 28.14 18.70
Pyridine 10.47 10.58 10.49 6.06 4.00 9.58 4.48
Cyclopropene 11.93 11.59 11.33 6.61 4.84 10.94 5.37
Ketene 10.50 10.63 10.62 5.73 3.84 10.39 1.20
Dimethylether 13.36 12.42 11.79 7.91 6.02 20.45 12.70
Dimethylsulfide 12.49 11.64 10.79 6.72 5.07 8.22 4.44
Formaldehyde 11.01 10.92 10.79 6.14 3.79 10.20 4.69
Pyrene 7.69 7.58 7.53 3.76 2.62 6.85 2.60
1,3-Butadiene 10.44 10.23 10.10 5.50 3.99 9.39 4.15
Propene 12.45 12.06 11.80 7.02 5.33 11.62 5.83
Pyridazine 9.03 9.33 9.31 4.88 2.76 8.49 3.47
Pyrimidine 10.00 10.13 10.07 5.55 3.46 9.25 4.16
Pyrazine 9.66 9.81 9.73 5.27 3.21 8.49 3.70

Table 7.2: HOMO-LUMO gap for the molecules in the benchmark set. All values are in eV.

failures to the minimal basis set. We also note that for the dimethylsulfide compound, which

is essentially dimethylether with oxygen being replaced by sulfur, the error is much smaller.

A possible reason for this observation is the fact that the sulfur in present parametrization

contains additional polarization functions with d-symmetry (compare section 3.4.2). Inclusion of

polarization functions for oxygen and nitrogen could possibly reduce the problem.

7.3 PHOTOEMISSION SPECTRUM

It has been reported, that the single-particle spectra from theoretical methods, such as GW

and hybrid DFT compare well to the experimental photoionization spectra, which are usually

obtained by photoelectron spectroscopy. At the same time the single-particle spectra from the

local DFT show qualitatively wrong picture of the spectra [38, 123, 178]. The underbinding of the
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occupied orbitals beyond the HOMO has a systematical character and has been attributed to the

delocalization problem. The long-range corrected (and CAM) functionals at least partially cure

these deficiencies and their spectra become qualitatively comparable to the experimental data

[38, 99, 161].

In view of this we investigate the occupied eigenvalue spectrum of two molecules, which

have been already studied in this context with first principles approaches. Pentacene (5-acene)

and perylene-3,4,9,10-tetracarboxylic-dianhydride (PTCDA) are both π−conjugated molecules,

which are interesting in photovoltaic applications and molecular electronics. We calculate the

eigenvalue spectrum of both molecules with the standard DFTB, the LC-DFTB and with the

first principles PBE/cc-pVTZ and BNL/cc-pVTZ methods. The spectra are presented in Fig. 7.4.

We use a simple Gaussian broadening profile with the full width at half minimum of 0.1 eV to

mimic the experimental resolution and broadening. All spectra have been rigidly shifted such

that the HOMO position is at 0 eV. To ensure the comparability with earlier studies, we use the

geometries, optimized at the B3LYP/cc-pVTZ level of theory.

The experimental photoemission spectrum of the PTCDA molecule is characterized by the

gap of 1.5 eV between the first and the second photoemission peaks. The second peak is observed

at the energies between -1.5 eV and -2.1 eV, relative to the first peak, which corresponds to

the HOMO [170]. The GW method, the DFT with long-range corrected functionals or CAM

functionals usually manage to reproduce these features qualitatively well. This is also confirmed

by our BNL/cc-pVTZ calculation. The eigenvalue spectrum is plotted in part a) of Fig. 7.4 and is

comparable to the standard LC-ωPBE result of ref. [99]. As has been already discussed in refs.

[99, 161] the local DFT usually fails to reproduce the photoemission spectrum even qualitatively.

This can be also observed in our PBE/cc-pVTZ calculation (compare part c) of Fig. 7.4). Specifically,

a degenerate σ−state is found right in the middle of the gap between the HOMO and HOMO-1.
1 There is no reason to expect the better performance for the DFTB, which is essentially the

approximate DFT with PBE functional. Comparison of part c) and d) of Fig. 7.4 shows, that the

DFTB spectrum strongly differs from the PBE spectrum as well.

We keep this finding in mind and take a look at the LC-DFTB spectrum, part b) of Fig. 7.4.

As in the case of DFTB, we observe a considerable difference to the BNL/cc-pVTZ spectrum. We

find four σ-orbitals, which are mostly located at the anhydride groups of the PTCDA molecule,

right in the middle of the gap between HOMO and HOMO-1 states. These orbitals fit into the

level ordering scheme of the DFTB. We visualize the level ordering by the colored dashed lines,

connecting the peaks and the pictogram with the spatial distribution of the respective orbitals.

It seems therefore, that the LC-DFTB just shifts the levels of the DFTB if the range-dependent

long-range HF exchange term is added. However, from the calculations on other systems, we find

that this shift is usually non-uniform and the level ordering is not preserved (see for example

the discussion of the pentacene below). For long-range corrected functionals the transition from

1if not stated otherwise, the state numbering is with respect to BNL/cc-pVTZ spectrum.
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ω= 0 (DFT limit) to finite ω values is generally accompanied by smooth non-uniform shifts of

single-particle levels. The occurrence of the level reordering is thus expected. Obviously the

BNL/cc-pVTZ theory demonstrates the correct reordering of the single-particle levels with respect

to the PBE/cc-pVTZ. At the same time the LC-DFTB fails to reproduce such reordering compared

to the DFTB for the case of PTCDA. We attribute this failure to the typical DFTB approximations

employed in the LC-DFTB method, such as exploitation of the minimal basis set, the two-center

approximation and the integral approximations. This is supported by the fact, that already the

DFTB results in Fig. 7.4 d) show strongly underbound σ−orbitals.

However, the level ordering issues have been also observed in the first principles LC-DFT.

In general LC-DFT with different short-range functionals and different choice of the range-

separation parameter can exhibit distinct level ordering. Körzdörfer et. al [99] employed the

concept of orbital many-electron self-interaction error (OMSIE) to gain further understanding.

They found, that even if the frontier orbitals are well described by the LC-DFT method, there

are states, usually of different symmetry (e.g. σ−orbitals), which show a considerable OMSIE.

In particular they discussed the spectrum of the tuned LC-ωPBE functional. Within the tuning

procedure the range-separation parameter is chosen such that the HOMO eigenvalue is equal to

the difference of the total energy of the neutral molecule and the total energy of it’s cation. This

procedure allows to non-empirically enforce the condition that the HOMO eigenvalue equals to the

ionization potential. For this functional the second peak of the PTCDA spectrum is composed of

the degenerate σ−states (which correspond to the HOMO-1/HOMO-2 in the LC-DFTB spectrum

in this work). Analysis of the orbital self-interaction error for the tuned LC-ωPBE showed

small OMSIE for the orbitals with π−symmetry and large OMSIE for σ−orbitals. The LC-ωPBE

with standard value of the range-separation parameter on contrast exhibited large OMSIE for

π−orbitals, while the σ−orbitals were mostly free of self-interaction error. This suggests, that the

level ordering failure of LC-DFTB could also be connected to the residual self-interaction of the

σ−orbitals, localized at the anhydride groups. Indeed we observe, that the energy levels relative

to HOMO, which correspond to the π−orbitals are quite well represented by the LC-DFTB.

We observe the problematic level ordering also for pentacene spectrum, which is presented in

the right panel of Fig. 7.4. In DFT, PBE and BNL calculations the levels up to the HOMO-4 show

the same order, while the LC-DFTB spectrum exhibits two σ−orbitals at it’s HOMO-3 and HOMO-

5 positions. These orbitals are additionally indicated by the red and blue dashed lines respectively.

Comparing the part g) and h) of Fig. 7.4 we see that already in the DFTB spectrum the position

of these orbitals is different with respect to PBE. This indicates the tendency of the approximate

theories to underbind these orbitals. In this case the influence of the DFTB approximations is

more evident. The preceding analysis leads to the conclusion, that the level ordering issue of the

LC-DFTB might be caused by the insufficient description of the σ−states, which is characterized

by a considerable remaining orbital self-interaction error on the one hand and the applied DFTB

approximations on the other. It is worth mentioning, that the LC-DFTB exhibits significant level
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Figure 7.4: Eigenvalue spectrum for pentacene (right panel) and PTCDA (left panel) molecules
from LC-DFTB compared to DFTB, BNL/cc-pVTZ and PBE/cc-pVTZ results. The HOMO levels
have been shifted to the zero energy for all methods. The Gaussian broadening with FWHM of
0.1 eV was applied.

shifts as compared to the DFTB, which correlates to the behavior of the LC-DFT with respect to

the local DFT. Moreover, the description of the levels with π−symmetry such as HOMO, HOMO-1,

HOMO-2 is quite accurate. Nevertheless, we conclude that the exploitation of the LC-DFTB

method as a tool for a full characterization of photoemission spectra is too ambitious.

7.4 COMMENT ON THE CHOICE OF THE RANGE-SEPARATION PARAMETER

The value of the range-separation parameter, which we use by default in this thesis has been

chosen to be ω = 0.3 a−1
0 . We found this value to give reasonable results for the prediction of

ionization potentials. We note, however, that we did not optimize this value with respect to the

experimental ionization potentials. The values, close to this are typically used in the standard

long-range corrected and CAM functionals. For example in the software package NWCHEM [195]

the value is ω= 0.33 for CAM-B3LYP, ω= 0.33 for LC-BLYP, ω= 0.3 for LC-PBE and ω= 0.33

for BNL functionals. These functionals, however, are all based on the range separation with the

error-function. The complementary error-function (erfc(x)= 1−erf(x)), which defines the short-

range, decays sharper than the exponential function of the Yukawa-type range separation as can
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be seen in Fig. 7.5 (compare also total energies of the atoms as a function of range-separation

parameter in Fig. 4.1). Thus it is expected, that the optimal values of the range-separation

parameter for the case of Yukawa range separation should be higher than the corresponding

values in the error-function-based functionals. In fact, this has been confirmed by Akinaga and

Ten-no [2]. The optimization of the parameters in their work was carried out with respect to the

atomization energies of the G2-1 benchmark set with the cc-pVTZ basis for different functionals.

It is, however, not clear, whether these parameter values can be directly transferred to the

LC-DFTB. From our calculations we found, that values ranging from ω= 0.5a−1
0 to ω= 0.75a−1

0 ,

suggested in their paper for pure long-range corrected functionals with Yukawa range separation,

result in systematic overestimation of the ionization potentials, which are calculated from

the HOMO eigenvalues and fundamental gaps, obtained from the HOMO-LUMO eigenvalue

difference. However, for the CAMY-B3LYP functional (CAM-B3LYP [200] with Yukawa range

separation), which contains a constant fraction of exact exchange, the optimal value was found to

be ω= 0.34a−1
0 . As has been outlined in section 3.8.2, the long-range γ−integral might effectively

include the effect of xc-functional through the atomic decay constant τ. Thus it is not granted,

that the xc-functional in the LC-DFTB method is a pure long-range corrected functional.

The optimization of all standard range-separated functionals is usually carried out with re-

spect to thermochemical data and atomization energies. Different ways of optimization and choice

of underlying local xc-functionals result in a different optimal parameter. All these methodics

rely on the total energy differences of the methods. A similar, consistent procedure for LC-DFTB

would therefore require a high quality fit of repulsive potentials, which is not available at the

moment. For this reason the optimization of the range-separation parameter has not yet been

done. Nevertheless, we show the mean absolute error (MAE) and mean signed error (MSE) for the

HOMO eigenvalue from LC-DFTB compared to experimental ionization potential as a function of

range-separation parameter ω for compounds used in the molecular benchmark set in Fig. 7.6.

This should give a feeling for a potential predictive power of the LC-DFTB method with respect to
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Figure 7.6: The mean absolute error and mean signed error of the HOMO eigenvalue from
LC-DFTB compared to the experimental IP for the compounds of the benchmark set as a function
of range-separation parameter ω.

the experimental ionization potentials. We sample the values on a grid with step ∆ω= 0.01a−1
0 for

0.01a−1
0 ≤ω≤ 1.0a−1

0 and ∆ω= 1.0a−1
0 for ω> 1.0a−1

0 . The MAE shows minimum at ω= 0.35 a−1
0 ,

while the mean signed error is minimal for ω= 0.39 a−1
0 . We also observe the aforementioned fact

of overestimation of the IP by the LC-DFTB for values in the range ω= 0.5a−1
0 to ω= 0.75a−1

0 . For

the values ω= 0.3 a−1
0 and ω= 0.5 a−1

0 the MAE are 0.48 eV and 0.55 eV respectively which are

similar. The larger values lead to increasing MAE, for example for ω= 0.8 a−1
0 the MAE grows to

0.82 eV. We conclude, that the choice ω= 0.3a−1
0 is reasonable, although not optimal for the IP

prediction.

7.5 EXECUTION TIMES

The predictive power is not the only interesting characteristic of a computational method. The de-

velopment of the LC-DFTB method in addition to the existing LC-DFT methods have been mainly

motivated by the requirement of performing large-scale calculations which are too expensive for

the first-principles LC-DFT implementations.

In section 3.9 it has been shown, that the Hamiltonian construction in the present LC-DFTB

implementation exhibits quadratic scaling with respect to the basis size. For the tested systems

(< 1000 atoms) this step is the bottleneck of the entire calculation, which lowers the computational
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Molecule BNL/3-21G BNL/cc-pVDZ BNL/cc-pVTZ LC-DFTB1 LC-DFTB2 DFTB

5-Acene 325 2396 59701 11 6 1
Perylene 541 4447 113414 12 6 1
H2P 932 7486 23825∗ 16 8 1
Coronene 2116 15983 260677 14 6 1
6-Acene 507 3516 79993 15 8 2
5-Thiophene 1303 11581 144735 16 11 2
PTCDA 3748 20477 521424 22 10 2
H2Pc 3034 27231 366838∗ 39 14 2
H2TPP 5735 43304 744967∗ 72 22 4
C60 7221 65393 655789∗ 121 23 2

Table 7.3: Wall time [sec] of a single point calculation of LC-DFTB, DFTB and long-range corrected
DFT with different basis sets for molecules with more than 30 atoms from the benchmark set,
considered in this chapter. The asterisk denotes the parallel jobs on 12 CPUs, LC-DFTB1 was
performed with εthreshold = 10−16 and LC-DFTB2 with εthreshold = 10−6.

efficiency of the LC-DFTB method with respect to the standard DFTB. Here we present the

absolute timings for selected molecules from LC-DFTB, DFTB and BNL with 3-21G, cc-pVDZ and

cc-pVTZ basis sets. The results for molecules with more than 30 atoms from the benchmark set

are presented in Tab. 7.3. The LC-DFTB calculations have been performed with the thresholding

algorithm and εthreshold = 10−16 (denoted by LC-DFTB1) and εthreshold = 10−6 (denoted by LC-

DFTB2) on a single core of an Intel Core-i7 CPU. We note, that for the threshold parameter

εthreshold = 10−6 the eigenvalues deviate from the exact calculation by less than 10−5 eV (compare

inset of Fig. 3.9). Thus we consider this value as meaningful for practical calculations. The DFTB

calculations have been performed on the same machine as LC-DFTB. The execution time in both

cases has been measured by the Linux time utility. The DFT calculations have been carried out

using the NWCHEM package in serial and parallel versions. The serial version was executed on

Intel Xeon 2.8GHz machines. The parallel calculations have been distributed over the 12 CPUs

on a cluster and are denoted by asterisk.

The first-principles methods require, as expected, considerable computational time. For

example 12 CPU parallel single point calculation of the buckminsterfullerene on the BNL/cc-

pVTZ level of theory required 7.6 days. This should be compared to 23 seconds for the LC-DFTB2

on a single core. Even the calculation with a small basis set (BNL/3-21G) turns out to be at least

30 times slower than the LC-DFTB1 and 50 times slower than LC-DFTB2 for smaller molecules.

For larger systems, the quadratic scaling 2 of the LC-DFTB results in the increase of the gap in

computational times between the LC-DFTB and first-principles calculations. The standard DFTB

is usually an order of magnitude faster than LC-DFTB2.

2the systems, for which the cubic scaling due to the diagonalization in the LC-DFTB method would dominate, are
hardly accessible in a usual way by the first-principles calculations.
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7.6 SUMMARY

We presented benchmark ground state calculations for a set of 35 organic molecules with the

LC-DFTB method. We investigated the frontier orbitals (HOMO and LUMO) of the LC-DFTB,

standard DFTB and first principles approaches which included the local PBE/cc-pVTZ, hybrid

B3LYP/cc-pVTZ and long-range corrected BNL/cc-pVTZ, BNL/cc-pVDZ and BNL/3-21G level of

theory.

The negative of the HOMO eigenvalues, which for the exact exchange-correlation functional

should equal the ionization potential has been compared to the experimental data. The mean

absolute deviation of 0.50 eV for LC-DFTB method is comparable to the result of the long-range

corrected BNL/3-21G, which is 0.67 eV. At the same time the deviations for standard DFTB

(2.50 eV) and the local PBE/cc-pVTZ (2.87 eV) are much larger. We consider this finding as

clear indication of the reduction of delocalization problem in the LC-DFTB method. Indirectly it

suggests, that the LC-DFTB method tends to satisfy the linearity condition (section 2.1). However,

to confirm this directly (as for example in the calculation, corresponding to the results of Fig. 2.2)

the extension to the spin-unrestricted formalism is necessary.

The fundamental gaps from the HOMO-LUMO difference have been compared to the BNL/cc-

pVTZ level of theory since the experimental values of electron affinities are in general not

available. With mean absolute error of 1.36 eV the LC-DFTB shows significantly better agreement

with the reference than the local PBE/cc-pVTZ (5.29 eV), hybrid B3LYP/cc-pVTZ (3.92 eV) and

standard DFTB (5.06 eV). At the same time the first principles BNL/3-21G shows the mean

absolute error of 0.41 eV, which is more than three times smaller than the LC-DFTB error. We

mention also occurrence of remarkable outliers, such as methane and dimethylether for which

we find huge deviations of 12.30 eV and 8.66 eV for LC-DFTB. We attribute this behavior to the

minimal basis set, used in the LC-DFTB.

We compared the full eigenvalue spectrum of LC-DFTB to the photoemission spectra of

PTCDA and pentacene molecule, which are well studied in this context. The single particle

energies beyond the HOMO show at first glance rather unsatisfactory results. Near inspection

shows, however, that the σ-orbitals, generally problematic for DFTB are notoriously underbound

by LC-DFTB as well. At the same time π-orbitals possess energies, similar to the first-principles

calculations.

The computational cost of the current implementation of the LC-DFTB method is usually

10-20 times larger than that of standard DFTB. At the same time the BNL/3-21G calculations are

still order of magnitude slower even for the small-sized systems, considered in this benchmark.

The better scaling of the LC-DFTB method with the basis size will make the difference in the

computational time for larger systems more significant.
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POLYMERS

The usual application scope of the approximate methods such as DFTB are extended systems.

The π-conjugated polymers constitute an important class of such materials, which are

important for applications such as field effect transistors [40, 51, 61], light-emitting diodes

[12, 127, 151] and photovoltaic cells [23, 75]. Disappointing is the fact, that the local DFT and in

some cases global hybrid DFT fail to reproduce the physics of these systems even qualitatively.

Typical is also the fact that the failures of local DFT are usually stronger emphasized if the

system size increases. Even in the case of a single extended molecule, where the intermolecular or

surface-molecule van-der-Waals interactions, which are the weak point of local DFT, are excluded,

the problems are not negligible. Specifically, local DFT fails to reproduce the correct bond length

alternation (BLA), which is the difference between the lengths of single and double bonds.

It is usually underestimated by the local DFT, while the Hartree-Fock theory systematically

overestimates it [25, 71, 82–84]. The BLA is connected to other electronic properties of the

conjugated molecular chains, such as band gap [24], linear and non-linear response to electric

fields [22, 121], Raman spectra [122, 190] and the description of the localized charge defect

formation. While for example the response to the electric field in the local DFT is drastically

overestimated, the description of polaronic states is even qualitatively wrong. The local DFT

predicts no polaron formation [133, 134], which contradicts the results from the HF theory and

hybrid B3LYP calculations [27, 204]. All these flaws are naturally inherited by the DFTB method

[44].

Körzdörfer at al. established the connection between BLA and self-interaction error [100],

which indicates the decisive role of the delocalization problem in the erroneous description of the

conjugated molecular chains. The long-range corrected functionals, which as we know successfully

deal with the delocalization problem, provide an improved description of BLA [82, 85]. It has
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This work Ref. [85]

n LC-DFTB DFTB HF PBE HF PBE B3LYP LC-ωPBE

2 15.4 11.3 - - 14.5 10.5 11.7 12.6
4 12.3 7.6 - - 12.8 6.8 8.5 10.6
6 11.6 6.2 - - 12.4 5.3 7.3 10.1
8 11.3 5.5 - - 12.3 4.4 6.7 9.9

10 11.2 4.9 - - 12.2 3.9 6.3 9.8
12 11.2 4.7 - - 12.2 3.5 6.0 9.8
14 11.2 4.4 - - 12.2 3.2 5.9 9.8
40 11.1 3.6 12.4 2.0 - - - -

Table 8.1: Bond length alternation in the central monomer unit of a trans-polyacetylene chain, n
denotes the number of C2H2 units in the chain. All results are given in pm.

been further shown, that the response properties, such as static longitudinal polarizabilities

are considerably better described as compared to the local DFT. We are interested thus in the

performance of the LC-DFTB for this class of problems. We apply the LC-DFTB to polyacetylene

(PA) oligomers in thermodynamically stable trans configuration. This is a simple, well-studied

π-conjugated system [28, 117, 186]. Since the parametrization of repulsive potentials has been

performed for hydrogen and carbon species only (chapter 5), we can only treat hydrocarbons at

the moment. Small number of atoms per monomer unit makes this system further accessible

for the first principles methods if longer chains are investigated. We begin with the bond length

alternation of the PA chains in section 8.1. In section 8.2 we show, that the LC-DFTB predicts a

formation of stable localized charge defects, known as bipolarons in the doped PA. The response

to electric field, specifically the static longitudinal polarizability as obtained by LC-DFTB is

discussed in section 8.3. Finally, in section 8.4, we briefly comment on the LC-DFTB calculations

on proteins in zwitterionic conformation in the gas-phase. The contents of sections 8.3 and 8.4

are part of ref. [119].

8.1 BOND LENGTH ALTERNATION

The experimental value of the BLA for trans-PA has been found to be ∆r = 8±3 pm [49, 202]. In

refs. [71, 84, 85] the BLA from the local DFT, DFT with hybrid functionals and wave function-

based methods has been already discussed. The key finding is that the local DFT tends to

underestimate the BLA by a factor of 2, while the Hartree-Fock theory overshoots the experimen-

tal value by a similar factor. The global hybrid functionals and post-Hartree-Fock methods (MP2,

CCSD) give rather reasonable values for the BLA at least for short oligomers. The study in ref.

[85] with basis set 6-31G(d) included among others the long-range corrected functionals LC-BLYP,

LC-ωPBE and the CAM functional CAM-B3LYP [200]. They performed very well, providing

BLA values ranging from 9 pm (CAM-B3LYP) to 10 pm (LC-BLYP), which are well within the
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experimental error. We compare the results of ref. [85] for HF, PBE, B3LYP and LC-ωPBE to the

results from the LC-DFTB with the repulsive potential from chapter 5 and the standard DFTB.

The BLA values for trans-PA with different number n of monomers are summarized in Tab. 8.1.

For the LC-DFTB and standard DFTB methods we optimize the geometries for oligomers with

number of monomer units ranging from n = 2 to n = 14. In addition, we perform the geometry

optimization of a n = 40 oligomer on LC-DFTB, DFTB, HF/6-311G* and PBE/6-311G* level of

theory (these geometries are then used in the next sections). The LC-DFTB predicts the BLA of

n = 14 oligomer to be 11.2 pm, while for the largest oligomer (n = 40) we obtain 11.1 pm. Compared

to the LC-ωPBE at n = 14 this value is higher by 1.3 pm. We should note, that for LC-ωPBE

the BLA value seems to saturate for n = 10−14, thus we do not expect a significant decrease in

BLA for larger oligomers at this theory level. The BLA (n = 40) for LC-DFTB, however, is still

smaller than the HF value, which in our calculation (n = 40) is 12.4 pm and in the calculation of

ref. [85] 12.2 pm for n = 14. The discrepancy may come from different basis sets (we use larger

6-311G*, while Jacquemin et al. use the 6-31G(d) set) or slightly distinct convergence criteria.

Important is the fact, that the BLA, as obtained from LC-DFTB saturates for longer chains. This

is in accord with LC-PBE and HF methods. The local PBE functional on contrast does not show

such a saturation at the oligomers with n = 10−14, while the LC-PBE, LC-DFTB and HF already

do. Furthermore, from our PBE calculation on the oligomer with n = 40 we obtain the BLA value

of only 2.0 pm. This clearly shows the tendency of the local DFT to equilibrate the single and

double bond lengths, which increases with the oligomer chain length. We notice similar behavior

for the standard DFTB method and the hybrid DFT with B3LYP functional.

We conclude, that the LC-DFTB shows qualitative improvement over the standard DFTB

and DFT with local and global hybrid functionals. The observed systematic overestimation of

the BLA by LC-DFTB can be possibly cured by providing a more careful repulsive potential

parametrization. In such a case the LC-DFTB method can become a valuable tool for computa-

tionally efficient optimization of geometries in the systems, where standard DFTB and the first

principles approaches fail.

8.2 EMERGING POLARON SIGNATURES

The next problematic case for the local DFT and DFTB, which is related to the BLA underesti-

mation is the class of doped π−conjugated polymers. The doping in these systems leads to the

conductance, in a similar way as in a semiconductor. The dopant acts as an electron acceptor

or donor. In contrast to semiconductors, where the hole in the valence band (electron in the

conduction band) lead to the transport, in the oligomer chains the charge transport is usually

explained by a propagation of quasi-particles, which are called polarons, bipolarons or polaron

pairs. The polaronic state is stabilized by the electron-phonon coupling and is characterized by a

local charge accumulation and the corresponding lattice distortion around it. The state appears

in the gap of the neutral species.
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Figure 8.1: The BLA and Mulliken charge distribution of a 40-acetylene2+ oligomer dication
for different theories. Bottom part: excess Mulliken charge qdication − qneutral in units of electron
charge [-e] for the traditional DFTB and local DFT at PBE/6-311G* level (right panel), for the
LC-DFTB and RHF/6-311G* (left panel) as a function of the monomer position n on the oligomer
chain. Top part: bond length alternation for all theories as a function of bond pair number k. On
the very top: the spatial distribution of LUMO orbitals for LC-DFTB (left) and DFTB (right).

The local DFT predicts no polaron formation in polymer chains. This failure has been observed

for different systems, such as polyacetylene, polythiophene and polyphenylene-vinylene. The

geometry relaxation on charged systems leads to nearly uniform bond length alternation patterns

and the excess charge is uniformly distributed over the whole chain. A single point calculation

on a geometry, which exhibits the lattice distortion due to the polaron formation (for example

resulting from a geometry relaxation on the restricted Hartree-Fock (RHF) level of theory) does

not improve the result.

The traditional DFTB also exhibits significant problems with the description of localized

polaronic states. Niehaus et al. [138] addressed this failure for polythiophene dications and

polyphenylene-vynilene dications. They found that the self-consistent DFTB predicts no localized

polaron state in the band gap. The analysis of the charge distribution and bond length alternation

patterns also showed no signatures of polaronic state. On the other hand, the non-self-consistent

(zeroth-order) DFTB was able to give qualitatively correct picture. This has been attributed to

the fact, that by construction the zeroth-order DFTB tends to artificially localize the states.
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Figure 8.2: Sketch of the PA-geometry. The ver-
tical dashed lines separate the C2H2 monomer
units, which are enumerated by the monomer
position number in the chain n. The C-C bonds
k are enumerated from left to right.

We apply the LC-DFTB method to a (p-)doped trans-PA in order to investigate it’s ability to

predict a polaronic state in this system. The doping process causes the oxidation of the polymer

molecule. This is modeled by reducing the number of electrons by 2 and we obtain a dication. 1 In

this case two well-separated charges, which form a bipolaron emerge [26]. The degenerate defect

state is located in the gap of the neutral species.

We optimize the geometry of a 40-acetylene2+ oligomer dication on the LC-DFTB, DFTB and

first principles PBE/6-311G* and RHF/6-311G* theory levels and investigate first the bond length

alternation (BLA) patterns of the relaxed geometries. The BLA ∆rk = rk − rk−1, 2≤ k ≤ 79, where

rk is the bond length of the k−th C-C bond (compare Fig. 8.2), is presented in the top part of Fig

8.1. In the top left panel we show the RHF/6-311G* and LC-DFTB result and in the right panel

the result of the PBE/6-311G* and DFTB methods. In all cases the pattern is irregular and shows

minima of BLA at k = 16 and k = 64 (for LC-DFTB and RHF/6-311G*) and at k = 18 and k = 62

(for DFTB and PBE/6-311G*). This corresponds to the monomers n = 8 and n = 32 for LC-DFTB

and RHF/6-311G* (n = 9 and n = 31 for DFTB and PBE/6-311G*). However, the absolute value of

the BLA as well as it’s relative change is too small for the DFTB and PBE/6-311G* methods. On

contrast, LC-DFTB and RHF/6-311G* show very pronounced changes in BLA pattern.

Nearly uniform BLA pattern for the methods based on the local xc-functionals results in

the nearly uniform distribution of the excess Mulliken charge per monomer unit. For DFTB

and PBE/6-311G* it is plotted in the bottom right part of Fig. 8.1 as a function of the monomer

position number n on the chain of the 40-acetylene2+ (compare Fig. 8.2). This indicates the

tendency to delocalize the charge density. The LC-DFTB and RHF/6-311G* on contrast show two

clearly defined minima at the monomers, where the lattice distortion occurs. Further inspection

of molecular orbitals shows that the LUMO state of the dication, calculated on the LC-DFTB

theory level, is localized at that positions (very top left of Fig. 8.1). The DFTB predicts LUMO

which is delocalized over the whole chain (very top right of Fig. 8.1).

In Tab. 8.2 we summarize the values of the HOMO and LUMO eigenvalues of the neutral

species and HOMO, LUMO and LUMO+1 eigenvalues of the dication. As can be seen, the LC-

DFTB and RHF methods predict the appearance of the (nearly) degenerate LUMO and LUMO+1

states in the middle of the gap of the neutral species. This is not observed for the local theories.

From other calculations (e.g. on polythiophene dications) we also see, that even without a proper

geometry relaxation (with or without the lattice distortion due to the polarons) the LC-DFTB

shows tendency to form a localized state, which is reflected in a local charge accumulation. Thus

1at the moment only closed-shell molecules can be reasonably described by the LC-DFTB.
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Neutral Dication

Theory HOMO LUMO Gap HOMO LUMO LUMO + 1

RHF/6-311G* -6.39 0.90 7.29 -7.89 -3.46 -3.46
PBE/6-311G* -3.98 -3.60 0.38 -6.39 -6.14 -5.93
DFTB -4.68 -4.12 0.56 -7.06 -6.78 -6.63
LC-DFTB -6.76 -1.84 4.92 -8.49 -5.85 -5.84

Table 8.2: Frontier orbitals of neutral 40-acetylene oligomer and it’s dication for different theories.
All values are in eV.

we conclude, that the LC-DFTB is able to describe bipolaronic states in the conjugated polymers

as opposed to the standard DFTB and DFT with local xc-functionals.

8.3 RESPONSE TO ELECTRIC FIELD

The problem of the disproportionate response of the local DFT to an applied electric field is well

known in the literature. It has been attributed to the lack of a necessary non-local response term

in the exchange-correlation functional [55, 92, 196]. It follows, that all local exchange-correlation

functionals fail to produce the correct induced field, which counteracts an applied electric field.

A major consequence of this fact is a wrong charge distribution, which exhibits a too strong

separation of the induced charge. This leads to the strong overestimation of static polarizabilities.

Remarkable is the fact, that this overestimation increases for larger systems. The failures get

even more pronounced for the hyperpolarizability and second hyperpolarizability [31]. In this

context it is worth mentioning, that this problem has also consequences for the important field of

molecular electronics. The lack of the field-counteracting term, the delocalization of the density

and the underestimated HOMO-LUMO gap lead to the erroneous description of transport in

molecular systems [114].

It has been already shown in chapter 7, that the LC-DFTB essentially improves the description

of the fundamental gap, compared to the DFTB and local DFT. This result suggests, that the

delocalization problem is reduced. Indeed, in the discussion of the polarons in trans-PA, we

observed the ability of the LC-DFTB to correctly describe the localized states. Recently Sekino

et al. provided evidence for the ability of the LC-DFT to overcome the field response problem

[176]. Due to the inclusion of the non-local range-dependent term in the LC-DFTB we expect the

signatures of the field-counteracting term to show up in a similar way.

To prove this, we calculate static longitudinal polarizabilities of trans-polyacetylene chains

with varying number of monomer units (C2H2) and inspect the induced charge distribution along

the chain using Mulliken population analysis. In the LC-DFTB and standard DFTB methods the
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PA (n = 10) PA (n = 40)

ω[a−1
0 ] BNL/6-311G** BNL/3-21G LC-DFTB BNL/3-21G LC-DFTB

2.0 1288 1229 1156 9341 9624
0.8 1212 1138 1200 8258 10108
0.5 1193 1102 1256 7914 10929
0.3 1321 1215 1345 9572 12547
0.2 1513 1400 1429 12795 14403
0.1 1809 1696 1560 21002 18393
10−2 2058 1938 1698 39665 28484
10−3 2059 1939 1701 40318 29087

Table 8.3: Static longitudinal polarizability of PA (n = 10) and PA (n = 40) for different values of
the range-separation parameter ω. All values are in atomic units.

electric field F is included via the additional term

Efield =−∑
A
∆qAF ·RA (8.1)

in the total energy functional, where ∆qA = qA − q0
A is the difference Mulliken charge (Eq. 1.24)

and RA are the atomic positions. Because DFTB and LC-DFTB use the minimal basis set, their

performance in predicting accurate absolute values for the polarizabilities is in general poor.

However, our calculations show, that even the LC-DFT with minimal basis (STO-3G) tends to

correctly reduce the polarizability with respect to the local DFT in the same basis.

The polarizabilities, obtained from the LC-DFTB method are compared to the first principles

long-range corrected DFT at the BNL/6-311G** (larger basis) and BNL/3-21G (smaller basis)

levels. The polarizabilities within the LC-DFT theory have been computed by solving the coupled-

perturbed Kohn-Sham equations (CPKS) using the algorithms, implemented in the NWCHEM

package. The geometries for the trans-polyacetylene (PA) with number of monomers n = 10

and n = 40 have been optimized at the B3LYP/6-311G* level. For the LC-DFTB we obtain the

polarizabilities using the finite field method. In this approach, the numerical derivative of the

longitudinal component of the dipole moment µ with respect to the perturbing electric field F is

calculated with the center difference formula α= (µ(F)−µ(−F))/2F, where the field strength was

chosen to be F = 4 ·10−4 [au].

In Tab. 8.3 the static longitudinal polarizability of both PA oligomers with n = 10 and n = 40 is

presented for different values of the range-separation parameter ω. The LC-DFTB and LC-DFT

show similar qualitative behavior, although the quantitative differences are rather large. All

three theories exhibit larger polarizabilities in the local DFT limit (ω→ 0) than in the opposite

HF+c limit (ω→∞), where the xc-functional is composed of local DFT correlation functional

only in addition to the full (unscreened) HF exchange. The rapid drop of the polarizability as the

range-separation parameter is increased is characteristic for both the first-principles approach

and the approximate LC-DFTB method (compare also main part of Fig. 8.3 for visual impression).
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Figure 8.3: Static longitudinal polarizability of the PA (n = 40) oligomer as a function of range-
separation parameter ω from LC-DFTB method. The induced Mulliken charge per monomer unit
due to the applied electric field F = 10−3 [au] for different values of ω [a−1

0 ] is shown in the inset.

In the case n = 10 the ratio of HF+c to local DFT limits is 0.63 for both BNL/6-311G** and

BNL/3-21G and 0.68 for LC-DFTB method. It decreases to 0.23 for BNL/3-21G and 0.33 for

LC-DFTB for the larger system with n = 40 units. This indicates the aforementioned tendency

of local functionals (DFT limit) to strongly overestimate the polarizability if the system size

increases.

We visualize the charge distribution to obtain more complete picture. In the inset of Fig.

8.3 the induced Mulliken charge due to the applied electric field of magnitude F = 10−3 [au]

along the longitudinal axis of the n = 40 oligomer for different values of the range-separation

parameter ω is plotted. We observe almost linear charge distribution for the LC-DFTB in the

limit ω→ 0, which indicates the typical overpolarization of the local theories. We note, that the

LC-DFTB in this limit is nearly identical to the DFTB, despite the fact that the xc-functional

is slightly different. For this reason, we omit the discussion of DFTB for brevity. Increasing the

parameter ω and thus introducing the range-dependent non-local exchange term gives rise to an

effective screening of the electric field. This leads to the correction of the polarizabilities towards

more physical values. The polarizability for the LC-DFTB as a function of the range-separation

parameter is plotted in the main part of Fig. 8.3 for comparison. It should be again noted, that the

results, presented here are of qualitative value. The quantitatively correct polarizabilities require
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Chignolin Trp-cage
HOMO LUMO Gap HOMO LUMO Gap

LC-DFTB (ω= 0.3a−1
0 ) -3.15 0.63 3.78 -3.66 -1.18 2.48

LC-DFTB (ω→∞) -5.90 2.14 8.04 -6.14 1.32 7.46
LC-PBE/3-21G -3.78 0.34 4.12 -4.46 -1.72 2.74
RHF/3-21G -5.42 1.81 7.23 -6.12 -0.13 5.99

Time [sec] Time [sec]

LC-DFTB (ω= 0.3a−1
0 ) 73 882

LC-DFTB (ω→∞) 78 331
LC-PBE/3-21G 8841 36844
RHF/3-21G 1577 7534

Table 8.4: Frontier orbital energies and fundamental gap (all in eV) of the chignolin and Trp-cage
zwitterions in the gas-phase for different theories (top part). The overall execution time in [sec]
(bottom part).

in general large basis sets. An alternative approach, which can be used in the approximate

methods like LC-DFTB is the exploitation of the empirical correction methods [88, 89].

8.4 PROTEINS IN GAS-PHASE

The properties of proteins are to a great extent determined by their folding structure. The

experimental determination of the protein folding structure is usually performed in it’s native

environment, where it exists in a solvated form. In recent years the experimental techniques

have been developed, which allow to non-destructively extract the proteins from the solution

and in combination with structural analysis to study the intramolecular interactions in the

gas-phase [180]. Important methods in this respect are the electrospray ionization (ESI) [48],

mass spectrometry and ion mobility measurements. Also, recent developments in the field of

diffractive imaging with soft-X-ray free-electron lasers may permit the structural determination

of single molecules at atomic resolutions in the gas-phase [32, 126]. On the side of computational

methods the effective solvent models in combination with gas-phase calculations may provide a

way to understand the protein folding mechanisms in different environments.

In this context the question whether peptides adopt the zwitterionic form, known from

aqueous solution, also in the gas-phase is still not definitely answered [120, 156, 187]. The local

DFT and thus the DFTB experience considerable difficulties in the description of the zwitterionic

state, where the long-range charge-charge interactions are important. In a recent study on the

model peptides chignolin [74] and Trp-cage [136] in their zwitterionic conformation in the gas-

phase Nishimoto et al. [141] found that the DFTB self-consistency procedure failed to converge.

The experimental results show, however, that the native zwitterionic configuration of Trp-cage

remains stable in the gas-phase. This finding is supported by the force field-based molecular
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dynamics calculations [94, 144].

The reason for this flawed behavior is the notorious underestimation of the HOMO-LUMO

gap by the DFTB method, which is connected to the delocalization problem. The possible technical

workaround is to rise the electronic temperature, which results in the converged calculation.

However, this way the actual problem is not solved. In this context the application of the LC-DFTB

method, which naturally reduces the delocalization problem, becomes interesting. We present

the LC-DFTB single point calculations on the chignolin and Trp-cage structures and compare

to the first-principles LC-ωPBE/3-21G and RHF/3-21G methods. For both proteins we use the

geometrical structures, deposited in the protein data base (PDB). They are obtained by NMR

measurements and constitute the native zwitterionic conformations of the proteins [74, 136].

For the gas-phase simulations we require the systems to be charge-neutral. To achieve this, we

restore the basic and acidic side residuals to their neutral form by appropriate protonation or

deprotonation. On the affected residuals the carboxy and amino groups have been locally relaxed

at the DFTB level (with electronic temperature set to T=500 K), while the rest of the atoms have

been kept fixed. The charges of carboxy-terminus and amino-terminus have been preserved. A

ribbon representation of both proteins is given in Fig. 8.4.

We performed the LC-DFT and RHF calculations with the parallel version of NWCHEM

on 8 CPUs. The LC-DFTB calculations were done on a single core of an Intel Core i7 CPU. We

summarize the eigenvalues of the frontier orbitals and the gap for both systems in Tab. 8.4. We

again find a good agreement in the description of HOMO and LUMO levels by LC-DFTB as

compared to the first-principles methods with small basis. We also show corresponding timings

in the bottom part of the table. The LC-DFTB calculations for different values of the range-

separation parameter ω show, that the convergence issue do not show up for the typical values of

ω as can be seen in Fig. 8.4. Opening the gap in general improves the convergence.

These calculations show, that the LC-DFTB method is capable of correctly describe the

proteins in their zwitterionic conformations in gas-phase. In this context it might be the method

of choice as a basis for the fragment molecular orbital approach (FMO) [47, 135, 140], which allows

to study biological systems with many thousands of atoms with quantum chemical methods.

8.5 SUMMARY

In this chapter we further demonstrated the signatures of the delocalization problem reduction in

the LC-DFTB method. We performed the geometry optimization with the LC-DFTB method and

the repulsive potentials from chapter 5 on trans-polyacetylene oligomers. The LC-DFTB shows

the saturation of bond length alternation (BLA) for growing system size. Specifically, present

parametrization predicts the BLA value of 11.1 pm for the molecule with 40 monomer units, which

we consider here as the polymer limit. This result is slightly larger than the experimental value

of 8.0 pm. Compared to the DFTB geometries which show the BLA of 3.6 pm and PBE/6-311G*

which predict the BLA of 2.0 pm the result of LC-DFTB is a clear improvement. In the case of
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Figure 8.4: The SCF convergence plot of chignolin and Trp-cage proteins as a function of range-
separation parameter ω for the LC-DFTB method. The SCF does not converge for ω < 0.1a−1

0 .
Structures of the proteins are shown as insets. These plots have been generated from protein
data base structures [74, 136] with the VMD software [79].

doped trans-polyacetylene, LC-DFTB clearly predicts the emergence of localized charge defects

(bipolarons), while DFTB and local DFT is not able to account for this important effect. The

study of the static longitudinal polarizabilities from the LC-DFTB method and the corresponding

charge distribution reveal the presence of the field-counteracting term in the LC-DFTB. This

finding is in particular important for the applications in the molecular electronics. We expect

that the LC-DFTB method will be able to deal with the overestimation of conductance, which

is usually observed in the transport calculations with local DFT. Finally, we showed that the

LC-DFTB method can be successfully applied to large biological systems, such as proteins in

zwitterionic conformation in gas-phase, which are in principle problematic for the standard DFTB

method.
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9
CONCLUSIONS AND OPEN QUESTIONS

The main result of this work is the successful implementation of the DFTB method, based

on the hybrid DFT-HF functionals. We provided the necessary parametrization tools and

included the required algorithms in the development version of the DFTB+ code. Furthermore,

we performed a parametrization of the method for the particular long-range corrected functional

(part I of the thesis).

We applied the new method to a series of cases, where the delocalization problem of the local

DFT and DFTB plays an important role (part II of the thesis). We found, that the new method,

referred to as LC-DFTB, significantly improves the quality of the results as compared to the

traditional DFTB and DFT with local xc-functionals. This improvement usually parallels that

of the long-range corrected DFT with respect to the local DFT. Specifically, the new method

outperforms the traditional DFTB in the description of orbital energies, HOMO-LUMO gaps,

the response to electric fields, bond length alternation and description of polaronic states in

conjugated polymers. Remarkable is the fact, that the LC-DFTB method is directly derived from

the corresponding LC-DFT method by applying simple DFTB approximations. No empirical fits

have been performed. The reduction of the self-interaction error is achieved due to the added

non-local range-dependent term only.

The inclusion of this necessary term to the new Hamiltonian results in the increased compu-

tational requirements of LC-DFTB as compared to the standard DFTB. Although the present

implementation already shows the expected quadratic scaling for the construction of the DFTB

Hamiltonian with the non-local term, the employed algorithms can be further optimized. Es-

pecially the extension of the implementation to the parallel version is important to compete

with first principles implementations, which usually exist as parallel versions. Of top priority is

the combination of the neighbor list-based algorithm for the Hamiltonian construction with the
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thresholding algorithm, which usually gives the speed-up factor of 2-3. The neighbor list is the

basic concept of the DFTB+. Therefore, the implementation of the LC-DFTB method in this code

should be based on the neighbor lists.

Important feature of the DFTB method, and in particular of it’s implementation in the DFTB+

code, is the ability to deal with both periodic and finite systems. The inclusion of non-local

range-dependent HF exchange term in the Hamiltonian for the case of periodic systems would

require only minor changes in the DFTB+ code, provided the neighbor list-based algorithm is

used. This would allow the inclusion of the hybrid range-separated functional HSE06 [67–69],

which has been successfully applied in the calculations of the lattice parameters, bulk moduli,

adsorption energies, atomization energies and band gaps of metals, insulators and semiconductors

[36, 78, 125, 142, 145, 157]. Usually the HSE06 functional outperforms the local DFT for periodic

systems in the same way as the long-range corrected functionals do for the finite systems.

The LC-DFTB method in the present work has been formulated for the closed-shell case. This

restricts the application area of the method. The extension to the spin-unrestricted case can in

principle be carried out as in the standard DFTB [95, 96]. This would especially allow to use the

procedure of non-empirical tuning of the exchange-correlation functional, where the condition

|εHOMO| = |E(N)−E(N −1)| = IP is enforced and the value of the range-separation parameter

for which this condition holds is used for the calculation. This approach further improves the

performance of the long-range corrected DFT as compared to the exploitation of the universal

value of the range-separation parameter [9, 93, 103, 161, 188].

Other branch of the further developments deals with parametrization of the method. At

the present time the electronic Hamiltonian is available for the elements C,H,O,N and S. The

repulsive potentials are available for the elements C and H. The results of this thesis show, that for

the electronic Hamiltonian the parametrization can be done with the same basis set parameters

(confinement radii) as in the standard DFTB. Nevertheless, the systematic optimization of the

parameters would contribute to the understanding of the limits of the LC-DFTB method. On

contrast, the repulsive potential should be definitely reoptimized for all elements. A careful

in-depth investigations should find an optimal reference theory and figure out the optimal fit

parameters.
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γ-INTEGRAL OVER YUKAWA INTERACTION

A.1 REDUCTION TO ONE-DIMENSIONAL INTEGRAL

In this section we show how to reduce the γ-integral

γ
Y ,ω
AB = τ3

Aτ
3
B

(8π)2

∫
e−τA |r−RA |e−τB|r′−RB| exp(−ω|r−r′|)

|r−r′| drdr′ (A.1)

to an one-dimensional quadrature. Note, that a slightly different way has been shown in appendix

of ref. [137]. We start with a general integral∫
f (r)g(r′)h(r−r′) drdr′ =

∫
f (r)(g∗h)(r)dr, (A.2)

where (g∗h)(r)= ∫
g(r′)h(r−r′)dr′ is the convolution of the functions g and h. Next we express

the real space functions by the Fourier transformation integral, where F [ f ](q) denotes the

Fourier transformed function f (r)∫
f (r)(g∗h)(r)dr=

∫ (∫
F [ f ](q)e−iqr dq

(2π)3

)(
F [(g∗h)](k)e−ikr dk

(2π)3

)
dr (A.3)

=
∫ (∫

F [ f ](q)e−iqr dq
(2π)3

)(
F [g](k)F [h](k)e−ikr dk

(2π)3

)
dr (A.4)

=
∫

F [ f ](q)F [g](k)F [h](k)
(∫

e−i(q+k)r dr
)

dkdq
(2π)6 (A.5)

=
∫

F [ f ](q)F [g](k)F [h](k) (2π)3δ(k+q)
dkdq
(2π)6 (A.6)

= 1
(2π)3

∫
F [ f ](−k)F [g](k)F [h](k) dk, (A.7)

where in Eq. A.4 the convolution theorem was used. Thus the double integral in real space Eq.

A.2 is now reduced to the a single integral in the Fourier space over a product of the Fourier
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APPENDIX A. γ-INTEGRAL OVER YUKAWA INTERACTION

transforms of the functions f , g and h. Now we use the known Fourier transformed forms of the

charge distribution FA(r)= τ3
A
π

e−τA |r−RA | and Yukawa interaction Y (r)= exp(−ω|r|)
|r|

F [FA(r)]= τ4
A

(k2 +τ2
A)2

eikRA (A.8)

F [Y (r)]= 4π
ω2 +k2 . (A.9)

Inserting these expressions into the Eq. A.7 and integrating out the angular coordinate we obtain

the expression for the one-dimensional quadrature

γ
Y,ω
AB =

∫
FA(r)FB(r′)Y (r−r′)drdr′ = τ4

Aτ
4
B4π

(2π)3

∫
eik·(RA−RB)

(k2 +τ2
A)2(k2 +τ2

B)2(k2 +ω2)
dk (A.10)

= τ4
Aτ

4
B8π2

(2π)3

∞∫
0

1∫
−1

k2 eikRAB cosθ

(k2 +τ2
A)2(k2 +τ2

B)2(k2 +ω2)
dkd cosθ (A.11)

= 2τ4
Aτ

4
B

πRAB

∞∫
0

ksin(kRAB)
(k2 +τ2

A)2(k2 +τ2
B)2(k2 +ω2)

dk. (A.12)

Here, we denote the interatomic distance as RAB = |RA −RB|.

A.2 ANALYTICAL EVALUATION OF THE OFF-SITE γ−INTEGRAL

The one-dimensional integral Eq. A.12 can be rewritten

γ
Y ,ω
AB = 2τ4

Aτ
4
B

πRAB

∞∫
0

qsin(qRAB)
(q2 +τ2

a)2(q2 +τ2
B)2(q2 +ω2)

dq (A.13)

= 2τ4
Aτ

4
B

2πiRAB

∞∫
−∞

qeiqRAB

(q2 +τ2
a)2(q2 +τ2

B)2(q2 +ω2)
dq. (A.14)

The integrand has three poles at ±iτa, ±iτB, ±iω. We close the contour in the upper half-plane

and evaluate the residuals

Res(iτA)= d
dq

[
qeiqRAB (q− iτA)2

(q2 +τ2
A)2(q2 +τ2

B)2(q2 +ω2)

]∣∣∣∣
q=iτA

=− e−τaRAB

2

[
τ2

B −3τ2
A +2ω2

(τ2
B −τ2

A)3(ω2 −τ2
A)2

]
+ e−τARAB RAB

[
1

4τA(τ2
B −τ2

A)2(ω2 −τ2
A)

]
(A.15)

Res(iω)= e−ωRAB

2(τ2
A −ω2)2(τ2

B −ω2)2
. (A.16)
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Note that the residual at the pole iτB is obtained from the one at the pole iτA by interchanging

τA ↔ τB. Thus the integral reads

γ
Y ,ω
AB = 2τ4

Aτ
4
B

2πiRAB

∞∫
−∞

qeiqRAB

(q2 +τ2
a)2(q2 +τ2

B)2(q2 +ω2)
dq

= 2τ4
Aτ

4
B

2πiRAB
2πi [Res(iτA)+Res(iτB)+Res(iω)]

= τ4
Aτ

4
B

(τ2
A −ω2)2(τ2

B −ω2)2

e−ωRAB

RAB

−
[

e−τARAB

(
τ2

A

τ2
A −ω2

τAτ
4
B

2(τ2
B −τ2

A)2
− τ4

A

(ω2 −τ2
A)2

(τ6
B −3τ2

Aτ
4
B +2ω2τ4

B)

(τ2
A −τ2

B)3RAB

)

+ e−τBRAB

(
τ2

B

τ2
B −ω2

τBτ
4
A

2(τ2
A −τ2

B)2
− τ4

B

(ω2 −τ2
B)2

(τ6
A −3τ2

Bτ
4
A +2ω2τ4

A)

(τ2
B −τ2

A)3RAB

)]
. (A.17)

In the limit ω→ 0 this formula is equivalent to the formula in ref. [42]. The long-range γ-integral

can be calculated as γlr,ω
AB (RAB)= γY,0

AB(RAB)−γY,ω
AB (RAB).

A.3 ANALYTICAL EVALUATION OF THE ON-SITE γ−INTEGRAL

We show how to evaluate the on-site γ-integral. As has been shown the γ-integral over the

Yukawa interaction can be reduced to the form

γ
Y ,ω
AB (RAB)= 2τ4

Aτ
4
B

πRAB

∫ ∞

0

qsin(qRAB)
(q2 +τ2

A)2(q2 +τ2
B)2(q2 +ω2)

dq. (A.18)

The on-site value is obtained from γ
Y,ω
AA = lim

RAB→0
τA=τB

γ
Y,ω
AB (RAB). We first perform the limit

γ
Y,ω
AA = lim

RAB→0
τA=τB

γ
Y,ω
AB (RAB)= lim

RAB→0
τA=τB

2τ4
Aτ

4
B

πRAB

∫ ∞

0

qsin(qRAB)
(q2 +τ2

A)2(q2 +τ2
B)2(q2 +ω2)

dq (A.19)

= lim
RAB→0
τA=τB

2τ4
Aτ

4
B

πRAB

∫ ∞

0

q
(q2 +τ2

A)2(q2 +τ2
B)2(q2 +ω2)

[ ∞∑
k=0

(−1)k (qRAB)2k+1

(2k+1)!

]
dq (A.20)

= 2τ8
A
π

∞∫
0

q
(q2 +τ2

A)4(q2 +ω2)
lim

RAB→0

1
RAB

[ ∞∑
k=0

(−1)k (qRAB)2k+1

(2k+1)!

]
dq (A.21)

= 2τ8
A
π

∫ ∞

0

q2

(q2 +τ2
A)4(q2 +ω2)

dq = τ8
A
π

∞∫
−∞

q2

(q2 +τ2
A)4(q2 +ω2)

dq. (A.22)

This integral can be evaluated, using the residue theorem. The integral has poles of the 4. degree

at q =±iτA, and simple poles at q =±iω. We choose the integration path to go from −∞ to ∞
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along the real axis and close the contour in the upper half-plane. The residues at both poles are

2πi Res(iτA)=
(5τ6

A +15τ4
Aω

2 −5τ2
Aω

4 +ω6)π

16τ5
A(τ2

A −ω2)4
(A.23)

2πi Res(iω)=− ωπ

(τ2
A −ω2)4

. (A.24)

From this we obtain the value of the on-site integral

γ
Y,ω
AA = τ8

A
π

∞∫
−∞

q2

(q2 +τ2
A)4(q2 +ω2)

dq = τ8
A
π

∑
z∈{iτA ,iω}

2πiRes(z) (A.25)

= τ8
A

(τ2
A −ω2)4

[
5τ6

A +15τ4
Aω

2 −5τ2
Aω

4 +ω6

16τ5
A

−ω
]

. (A.26)

The limit ω→ 0, which corresponds to the Coulomb interaction gives already known result, which

is used in the standard DFTB

lim
ω→0

γ
Y ,ω
AA = 5

16
τA (A.27)

and the opposite limit ω→∞ vanishes as expected.
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The practical Kohn-Sham calculation results in a set of converged single particle orbitals

{ψi(r)}, 〈ψi|ψ j〉 = δi j, which constitute the ground state density ρ(r) =
N∑

i=1
|ψi(r)|2. This den-

sity corresponds to the local Kohn-Sham potential vKS(r). If we know the exact potential, we can

immediately obtain the orbitals. Now let us consider the reverse problem. Assume we have a set

of converged orbitals, how to determine the local potential to which these orbitals correspond?

In particular this can be interesting, if the orbitals have been optimized in a non-local potential.

Baer et al. [9] suggested to define the deviance vector |D j〉

|D j〉 =
(
ε j −

[
−1

2
∇2 +vavg(r)

])
|ψ j〉 (B.1)

with local average potential vavg(r) and effective orbital energies εi. Minimizing the functional

L
[
vavg,

{
ε j

}]= N∑
j=1

〈D j|D j〉

=
N∑

j=1

∫
ψ j(r′)

(
ε j −

[
−1

2
∇2 +vavg(r′)

])(
ε j −

[
−1

2
∇2 +vavg(r′)

])
ψ j(r′)dr′

=
N∑

j=1

∫
ψ j(r′)

(
ε2

j −2ε j

[
−1

2
∇2 +vavg(r′)

]
+

[
−1

2
∇2 +vavg(r′)

]2)
ψ j(r′)dr′ (B.2)

with respect to the average potential and the orbital energies we obtain the equations

0 != ∂L
∂εk

=
N∑

j=1

∫
ψ j(r′)

(
2ε jδ jk −2δ jk

[
−1

2
∇2 +vavg(r′)

])
ψ j(r′)dr′ (B.3)

⇒ ε j =
∫
ψ j(r′)

[
−1

2
∇2 +vavg(r′)

]
ψ j(r′)dr (B.4)

111



APPENDIX B. AVERAGE POTENTIAL

0 != δL
δvavg(r)

=
N∑

j=1

∫
ψ j(r′)

(
−2ε jδ(r−r′)+2

[
−1

2
∇2 +vavg(r′)

]
δ(r−r′)

)
ψ j(r′)dr′

= 2
N∑

j=1
ψ j(r)

[
−ε j +

[
−1

2
∇2 +vavg(r)

]]
ψ j(r) (B.5)

⇒
N∑

i=1
|ψi(r)|2vavg(r)=

N∑
j=1

ψ j(r)
(
ε j + 1

2
∇2

)
ψ j(r). (B.6)

Simultaneous solution of these equations provides the average potential

vavg(r)= 1
ρ(r)

N∑
j=1

ψ j(r)
(
ε j + 1

2
∇2

)
ψ j(r), (B.7)

ε j = 〈ψ j|vavg − 1
2
∇2 |ψ j〉 . (B.8)

The potential is determined up to a constant. To eliminate this ambiguity we require εN = εHOMO,

where εHOMO is the HOMO eigenvalue of the molecular calculation, from which we obtained the

orbitals.
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The equation 3.52 can be solved numerically in the following way. First we rescale the decay

constant τ by the range-separation parameter and introduce a new variable x = τ/ω. We rewrite

then the Eq. 3.52 in terms of these quantities

xgl (1−P(x))= x− ũ, (C.1)

where ũ = 16U
5ω and gl = 1

2(2l+1) and we define the function

P(τ,ω)= τ8 +3τ6ω2 −τ4ω4 +0.2ω6τ2 −3.2τ7ω

(τ2 −ω2)4 (C.2)

and further note that P(τ,ω)= P(τ/ω,1)= P(x). Simplifying this function, we obtain

P(x)= x8 +3x6 − x4 +0.2x2 −3.2x7

(x2 −1)4 = x2 (
x2 +0.8x+0.2

)
(x−1)4

(x−1)4 (x+1)4 = x2 (
x2 +0.8x+0.2

)
(x+1)4 . (C.3)

The variable x is by definition non-negative and can in principle take values in the interval

x ∈ [0,∞). We expand the denominator (1+x)4 = x4+4x3+6x2+4x+1> x4+0.8x3+0.2x2, ∀x ∈ [0,∞)

thus P(x)< 1, ∀x ∈ [0,∞). We investigate the limits of the expression

f (x)= x
(
1− x4 +0.8x3 +0.2x2

(1+ x)4

)
. (C.4)

The limit lim
x→0

f (x)→ 0 obviously. To obtain the limit for x →∞ we proceed as follows

lim
x→∞ f (x)= lim

x→∞x
(
1− x4 +0.8x3 +0.2x2

(1+ x)4

)
= lim

x→∞x

1−
1+0.81

x +0.2 1
x2(

1+ 1
x
)4

 (C.5)

≈ lim
x→∞x

(
1−

(
1+0.8

1
x
+0.2

1
x2

)(
1−4

1
x
+10

1
x2 +O (

1
x3 )

))
(C.6)

= lim
x→∞x

(
1−

(
1+0.8

1
x
−4

1
x
+O (

1
x2 )

))
= lim

x→∞

(
3.2+O (

1
x

)
)
= 3.2 (C.7)
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Figure C.1: The left-hand side (LHS) and right-hand side (RHS) of the equation C.1 for ũ = 4 and
gl = 1.

Next we perform the derivative

d f
dx

= 1− x5 +1.8x4 + x3 +0.2x2

(1+ x)5 (C.8)

Using the same analysis as in the case of the function P(x), expanding the denominator (1+ x)5 =
x5 +5x4 +10x3 +10x2 +5x+1 > x5 +1.8x4 + x3 +0.2x2 we conclude that the second term in Eq.

C.8 takes values in the interval [0,1), thus lim
x→∞

d f
dx = 0, lim

x→0
d f
dx = 1 and it follows, that f (x) is

monotonous on the positive real numbers. Thus the Eq. C.1 has at most one solution on the

positive real numbers, which is the intersection point of the straight line (right-hand side) and the

function f (x)gl (left-hand side). As an example, we plot the function f (x) together with the right

hand side of the Eq. C.1 h(x)= x− ũ in Fig. C.1 for the values ũ = 4 and gl = 1. The function h(x)

intersects the x-axis in the point ũ and the limit 3.2gl in the point 3.2gl + ũ. From the analysis

above we conclude that the solution, the intersection point of functions gl f (x) and h(x), is in the

interval x ∈ [ũ, ũ+3.2gl].

To formulate a solution algorithm we use the nested interval principle. Given the values ω,U , l

the solution can be found in the interval x ∈ [ũ, ũ+3.2gl]. We evaluate thus the function gl f (x) at

the limits of this interval and obtain the new limits for the linear function. The solution interval

in general reads In = [xn
min, xn

max]= [ f (xn−1
min ), f (xn−1

max)], where I0 = [x0
min, x0

max]= [ũ, ũ+3.2gl]. The

properties of the functions (monotonous, continuous, limited) lead to a converged solution (interval

width reduces to a given numerical precision).
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Table D.1: Bond lengths in [Å] and angles in [deg] for se-

lected hydrocarbons from LC-DFTB, standard DFTB, B3LYP/6-

311G*, BNL/6-311G* and experiment.

Molecule Quantity Exp. [115] ([65]) LC-DFTB DFTB B3LYP BNL

Allene

H2C C CH2

C-C 1.308 1.315 1.313 1.303 1.323

C-H 1.087 1.106 1.096 1.087 1.122

∠HCH 118.2 116.1 117.5 116.9 117.7

∠HCC 120.9 122.0 121.2 121.5 121.2

Benzene

C-C 1.397 (1.399) 1.411 1.397 1.394 1.413

C-H 1.084 (1.101) 1.111 1.099 1.086 1.122

Biphenyl

C-C (intra ring) (1.396) 1.411 1.397 1.393 1.412

C-C (inter ring) 1.489 1.526 1.476 1.485 1.510

dihedral (rings) 41.6 30.3 29.8 40.9 43.0

1,3-Butadiene

Ca

H

H
Cb

H

Cb

H
Ca

H

H

Cb-Cb 1.476 (1.467) 1.495 1.455 1.456 1.487

Ca-Cb 1.337 (1.349) 1.342 1.342 1.337 1.352

C-H (average) (1.108) 1.106 1.096 1.087 1.124

∠CCC 122.9 (124.4) 123.9 122.9 124.4 123.9

Continued on next page
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Molecule Quantity Exp. [115] ([65]) LC-DFTB DFTB B3LYP BNL

∠CbCaH (120.9) 121.4 121.4 121.8 121.9

1,3-Butadiyne

HCa Cb Cb CaH

Ca-Cb 1.205 (1.218) 1.207 1.214 1.206 1.222

Cb-Cb 1.378 (1.384) 1.424 1.393 1.364 1.403

C-H 1.058 (1.09) 1.087 1.075 1.064 1.102

Butatriene

H2Ca Cb Cb CaH2

Ca-Cb 1.318 1.328 1.327 1.314 1.330

Cb-Cb 1.283 1.289 1.281 1.265 1.292

C-H 1.083 1.108 1.098 1.087 1.122

∠HCH 117.0 115.7 117.3 116.7 117.4

∠CCH 121.5 122.1 121.3 121.6 121.3

2-Butene (cis)

Cb

H

CaH3

Cb

H

CaH3

Ca-Cb 1.506 1.521 1.486 1.502 1.523

Cb-Cb 1.346 1.344 1.341 1.334 1.352

∠CaCbCb 125.4 127.4 126.6 128.0 127.6

2-Butene (trans)

Cb

H

CaH3

Cb

CaH3

H

Ca-Cb 1.508 1.523 1.486 1.501 1.522

Cb-Cb 1.347 1.345 1.340 1.331 1.349

∠CaCbCb 123.8 124.4 123.5 125.4 125.1

2-Butyne

H3Ca Cb Cb CaH3

Cb-Cb 1.214 1.204 1.209 1.203 1.221

Ca-Cb 1.468 1.484 1.455 1.459 1.484

C-H 1.116 1.105 1.100 1.094 1.129

∠CbCaH 110.7 111.3 110.8 111.4 111.3

Cyclobutane

(CH2)4

C-H 1.092 (1.113) 1.110 1.103 1.092 1.128

C-C 1.555 1.568 1.540 1.557 1.575

Cyclobutene

CaH2 CbH

CbHCaH2

Cb-Cb 1.342 1.351 1.358 1.337 1.356

Ca-Ca 1.566 1.588 1.569 1.572 1.588

Ca-Cb 1.517 1.539 1.525 1.519 1.539

Ca-H 1.094 1.112 1.104 1.095 1.130

Cb-H 1.083 1.109 1.097 1.086 1.122

∠CaCbCb 94.2 94.4 94.0 94.4 94.3

∠CbCbH 133.5 133.4 133.4 133.5 133.4

∠CaCaH 114.5 114.8 114.8 114.8 115.0

Continued on next page
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Molecule Quantity Exp. [115] ([65]) LC-DFTB DFTB B3LYP BNL

∠CaCaCb 85.8 85.6 86.0 85.6 85.7

∠HCaH 109.2 108.8 109.2 108.4 108.6

Cyclopentane

(CH2)5

C-H 1.114 1.112 1.105 1.094 1.130

C-C 1.546 1.559 1.518 1.537 1.553

∠CCH 111.7 110.2 110.1 110.0 109.9

Cyclopropane

(CH2)3

C-C 1.501 (1.512) 1.519 1.490 1.508 1.526

C-H 1.083 1.102 1.096 1.084 1.120

∠HCH 114.5 (114.0) 114.3 114.2 114.0 114.0

∠HCC 117.9 118.0 118.1 118.2 118.3

Cyclopropene

H2Ca

CbH
CbH

Ca-H 1.088 (1.112) 1.111 1.107 1.092 1.128

Cb-Cb 1.296 (1.304) 1.320 1.319 1.290 1.310

Ca-Cb 1.509 (1.519) 1.531 1.495 1.509 1.529

Cb-H 1.072 (1.077) 1.100 1.090 1.078 1.114

∠HCaH 114.57 113.4 113.2 113.3 113.5

∠CbCbH 149.85 148.8 148.3 149.7 149.8

Fulvene

Ca

CdH2

CbH

CcH CcH

CbH

Ca-Cd 1.349 1.352 1.350 1.341 1.354

Ca-Cb 1.470 1.513 1.469 1.474 1.499

Cb-Cc 1.355 1.362 1.360 1.351 1.365

Cc-Cc 1.476 1.500 1.463 1.475 1.500

Cb-H 1.078 1.107 1.095 1.082 1.119

Cc-H 1.080 1.108 1.096 1.083 1.120

Cd-H 1.130 1.103 1.094 1.085 1.122

∠CaCbCc 107.7 108.4 107.9 107.9 108.0

∠CaCbH 124.7 124.7 124.9 124.5 124.4

∠HCdH 117.0 116.1 117.4 116.7 117.1

∠CbCaCb 106.6 104.7 106.1 106.1 105.9

∠CbCcCc 109.0 109.2 109.0 109.0 109.1

∠CbCcH 126.4 126.4 126.4 126.5 126.4

Isobutane

(CbH3)3CaH

Ca-Cb 1.525 (1.535) 1.559 1.518 1.534 1.549

Ca-H 1.108 (1.122) 1.126 1.116 1.099 1.134

Cb-H 1.100 (1.113) 1.102 1.098 1.094 1.130

Continued on next page
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Molecule Quantity Exp. [115] ([65]) LC-DFTB DFTB B3LYP BNL

∠CaCbH n/a (111.4) 110.9 110.9 111.5 111.7

∠CbCaCb 111.2 (110.8) 111.2 110.9 111.0 110.7

∠CbCaHa 109.4 107.7 108.1 107.8 108.1

∠HCbH (average) 108.2 107.7 107.9 107.6 107.6

Methylene

CH2

C-H 1.085 (1.078) 1.120 1.115 1.115 1.154

∠HCH 135.5 (130) 103.8 100.1 101.0 100.7

Naphtalene

Cc

Cc

Ca

H

Cb
H

Cb
H Ca

H

Ca

H

Cb
H

Cb
HCa

H

Ca-Cb 1.370 1.388 1.380 1.374 1.389

Cb-Cb 1.410 1.437 1.415 1.415 1.441

Ca-Cc 1.420 1.450 1.422 1.420 1.442

Cc-Cc 1.420 1.449 1.428 1.432 1.438

∠CaCcCc 119.4 118.8 119.1 118.8 119.1

Neopentane

C(CH3)4

C-C 1.537 1.575 1.526 1.539 1.553

C-H 1.114 1.102 1.098 1.095 1.131

∠CCH 112.2 111.1 111.0 111.3 111.2

∠HCH 106.6 107.8 108.0 107.6 107.7

Propene

CcHd

Hd

Hd

Cb

Hc

Ca

Ha

Hb

Ca-Ha n/a (1.104) 1.103 1.094 1.087 1.124

Ca-Cb 1.353 (1.341) 1.336 1.334 1.329 1.347

Cc-Hd n/a (1.117) 1.104 1.100 1.096 1.130

Cb-Cc 1.488 (1.506) 1.520 1.486 1.501 1.521

∠CbCcHd n/a (110.7) 110.7 110.7 111.2 111.2

∠CbCaHa n/a (121.3) 121.3 121.3 121.8 121.8

∠CaCbCc 124.8 (124.3) 125.2 123.9 125.4 124.9

Propyne

H3Cc Cb CaH

Cc-Cb 1.460 (1.459) 1.480 1.453 1.457 1.481

Ca-H 1.060 (1.056) 1.086 1.074 1.064 1.102

Cc-H 1.096 (1.105) 1.104 1.100 1.094 1.128

Cb-Ca 1.207 (1.206) 1.201 1.206 1.201 1.220

∠HCcCb 110.6 (110.2) 111.1 110.6 111.2 111.2

∠HCcH 108.3 107.8 108.3 107.7 107.8

Spiropentane

Ca

CbH2

CbH2CbH2

CbH2

Cb-Cb 1.520 1.543 1.508 1.530 1.547

Ca-Cb 1.470 1.512 1.479 1.484 1.502

Continued on next page
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Molecule Quantity Exp. [115] ([65]) LC-DFTB DFTB B3LYP BNL

C-H 1.090 1.104 1.097 1.086 1.121

∠HCH 118 114.2 114.2 114.3 114.6

∠CbCaCb (intra ring) 62 61.3 61.3 62.1 62.0

∠CbCaCb (inter ring) 137.3 137.7 137.8 137.2 137.3

Toluene

CH3

C-C (ring) 1.395 (1.399) 1.410 1.396 1.392 1.411

C-CH3 1.513 (1.524) 1.535 1.494 1.510 1.530

C-H (average) 1.082 (1.11) 1.108 1.098 1.088 1.124

Vinylacetylene

Ca

Ha

Hb

Cb

Hc

Cc

Cd

Hd

Cb-Cc 1.434 1.465 1.433 1.423 1.455

Ca-Cb 1.344 1.342 1.340 1.337 1.352

Cc-Cd 1.215 1.205 1.211 1.204 1.221

Ca-Ha 1.106 1.102 1.093 1.084 1.121

Cd-Hd 1.090 1.086 1.075 1.064 1.102

∠CbCcCd 177.9 178.8 177.8 178.1 179.1

∠HbCaCb 121.6 122.7 121.7 121.8 121.3

∠CcCdHd 177.7 179.6 178.5 179.2 179.5

∠HaCaCb 118.7 121.0 120.9 121.0 121.1

∠HaCbCa 121.7 119.8 120.8 119.5 120.1

∠CaCbCc 123.1 124.4 123.1 124.6 123.6

Methane

C

H

H

H

H

C-H 1.087 1.091 1.089 1.091 1.126

∠HCH 109.5 109.5 109.5 109.5 109.5

Acetylene

HC CH
C-C 1.203 1.198 1.203 1.198 1.217

C-H 1.063 1.087 1.075 1.065 1.103

Ethylene

C-C 1.339 1.327 1.327 1.327 1.346

C-H 1.086 1.103 1.094 1.086 1.123C
H

H
C

H

H

∠HCC 121.2 122.1 121.6 121.9 121.7

Ethane

C-C 1.536 1.531 1.501 1.530 1.549

C-H 1.091 1.102 1.098 1.094 1.129

∠HCH 108.0 107.7 107.8 107.4 107.2
H3C CH3

∠HCC 110.9 111.2 111.1 111.4 111.6
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APPENDIX D. GEOMETRY DATA FOR HYDROCARBONS

Mode LC-DFTB DFTB B3LYP BNL Exp.[115] ∆ ∆rel[%]

Methane
ν1, A1, sym stretch 3040.0 2953.3 3032.2 2853.2 2917.0 123.0 4.2
ν2, E, deformation (2-fold) 1590.7 1514.5 1581.1 1468.5 1534.0 56.7 3.7
ν3, T2, stretch (3-fold) 3329.0 3155.1 3136.8 2978.0 3019.0 310.0 10.3
ν4, T2, deformation (3-fold) 1388.4 1336.7 1355.4 1246.9 1306.0 82.4 6.3
Acetylene
ν1, Σ+

g , CH stretch 3524.3 3427.7 3514.8 3297.4 3374.0 150.3 4.5
ν2, Σ+

g , CC stretch 2190.0 2114.2 2070.3 2013.4 1974.0 216.0 10.9
ν3, Σ+

u , CH stretch (2-fold) 3384.2 3309.0 3412.7 3187.8 3289.0 95.2 2.9
ν4, πg, CH bend 708.9 496.7 565.6 620.3 612.0 96.9 15.8
ν5, πu, CH bend 783.8 708.0 765.7 730.3 730.0 53.8 7.4
Ethylene
ν1, Ag, CH2 stretch 3119.2 3025.1 3138.1 2955.5 3026.0 93.2 3.1
ν2, Ag, CC stretch 1890.3 1823.8 1697.2 1648.5 1623.0 267.3 16.5
ν3, Ag, CH2 scissor 1358.6 1316.7 1383.7 1303.6 1342.0 16.6 1.2
ν4, Au, CH2 twist 1138.1 1043.9 1066.9 1014.5 1023.0 115.1 11.3
ν5, B1g, CH2 A-stretch 3249.1 3126.4 3192.7 3010.6 3103.0 146.1 4.7
ν6, B1g, CH2 rocking 1325.1 1235.3 1247.1 1171.5 1236.0 89.1 7.2
ν7, B1u, CH2 waggling 971.5 844.3 967.5 937.9 949.0 22.5 2.4
ν8, B2g, CH2 waggling 984.4 908.9 956.2 923.9 943.0 41.4 4.4
ν9, B2u, CH2 A-stretch 3270.1 3148.7 3221.1 3032.2 3106.0 164.1 5.3
ν10, B2u, CH2 rocking 887.0 850.1 839.3 811.6 826.0 61.0 7.4
ν11, B3u, CH2 s-stretch 3114.2 3015.7 3123.1 2937.4 2989.0 125.2 4.2
ν12, B2u, CH2 scissor 1453.9 1386.3 1478.4 1371.6 1444.0 9.9 0.7
Ethane
ν1, A1g, CH3 s-stretch 3032.3 2930.7 3031.6 2861.3 2954.0 78.3 2.7
ν2, A1g, CH3 s-deform 1475.3 1470.0 1437.5 1351.8 1388.0 87.3 6.3
ν3, A1g, CC stretch 1083.3 1130.3 1001.8 988.7 995.0 88.3 8.9
ν4, A1u, torsion 262.3 277.5 307.3 337.2 289.0 -26.7 -9.2
ν5, A2u, CH3 s-stretch 3012.3 2917.2 3031.6 2861.3 2896.0 116.3 4.0
ν6, A2u, CH3 s-deform 1453.3 1402.7 1420.3 1324.6 1379.0 74.3 5.4
ν7, Eg, CH3 d-stretch 3216.2 3050.2 3075.6 2921.0 2969.0 247.2 8.3
ν8, Eg, CH3 d-deform 1531.2 1461.4 1521.4 1413.5 1468.0 63.2 4.3
ν9, Eg, CH3 rocking 1328.8 1253.3 1226.8 1148.9 1190.0 138.8 11.7
ν10, Eu, CH3 d-stretch 3232.6 3068.1 3101.3 2938.4 2985.0 247.6 8.3
ν11, Eu, CH3 d-deform 1548.1 1478.0 1524.1 1416.0 1469.0 79.1 5.4
ν12, Eu, CH3 rocking 900.8 870.4 830.7 799.8 822.0 78.8 9.6

Mean signed error [cm−1] 106.1 25.9 61.4 -38.0
Mean absolute error [cm−1] 107.7 50.7 64.1 45.2

Table D.2: Vibrational frequencies in [cm−1] of reference molecules for LC-DFTB in present
parametrization, standard DFTB and first principles B3LYP/6-311G* and BNL/6-311G*. ∆ and
∆rel are absolute and relative errors of LC-DFTB compared to experiment.
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NEIGHBOR LIST-BASED EVALUATION OF FORCES

As in the case of Hamiltonian evaluation (section 3.9.2) we write out the sum and collect the

summands to the respective force contributions. We rewrite the sum over all force derivatives Eq.

3.75 in the following way (where for brevity
∑
α
= ∑
α∈A

and µ ∈ C, κ ∈ K , β ∈ B, α ∈ A)

−4
∑
K

FK = (E.1)

=∑
K

∑
C>K

∑
B

∑
A>B

∑
µκαβ

Sαβ(∆Pκβ∆Pµα+∆Pκα∆Pµβ)(DK Sκµ)(γKB +γCB +γK A +γCA) (E.2)

+∑
K

∑
C>K

∑
B

∑
A=B

∑
µκαβ

Sαβ(∆Pκβ∆Pµα+∆Pκα∆Pµβ)(DK Sκµ)(γKB +γCB) (E.3)

+∑
K

∑
C>K

∑
B

∑
A>B

∑
µκαβ

Sαβ(∆Pµα∆Pκβ+∆Pµβ∆Pκα)(γCB +γKB +γCA +γK A)(DCSµκ) (E.4)

+∑
K

∑
C>K

∑
B

∑
A=B

∑
µκαβ

Sαβ(∆Pµβ∆Pκα+∆Pµα∆Pκβ)(DCSµκ)(γCB +γKB) (E.5)

+∑
K

∑
C≥K

∑
B

∑
A≥B
A 6=K

∑
µκαβ

SαβSκµ(∆Pκβ∆Pµα+∆Pκα∆Pµβ)(DKγK A) (E.6)

+∑
K

∑
C≥K

∑
B

∑
A>B
B 6=K

∑
µκαβ

SβαSκµ(∆Pκα∆Pµβ+∆Pκβ∆Pµα)(DKγKB) (E.7)

+∑
K

∑
C>K

∑
B

∑
A≥B
A 6=C

∑
µκαβ

SαβSκµ(∆Pκβ∆Pµα+∆Pκα∆Pµβ)(DCγCA) (E.8)

+∑
K

∑
C>K

∑
B

∑
A>B
B 6=C

∑
µκαβ

SβαSκµ(∆Pκα∆Pµβ+∆Pκβ∆Pµα)(DCγCB). (E.9)

Note that sums like
∑

A=B
=

M∑
A=1

δAB contain only one summand for A = B. In following we present

the pseudo code of the routine as it is implemented in the DFTB+ code.
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APPENDIX E. NEIGHBOR LIST-BASED EVALUATION OF FORCES

do K=1 , M

do C ∈ N(K)

do B=1 , M

do A ∈ N(B)

γ1 = γKB +γCB

γ2 = γKB +γCB +γK A +γCA

F = ∑
µ∈C

∑
κ∈K

∑
α∈A

∑
β∈B

Sβα(∆Pβκ∆Pαµ+∆Pακ∆Pβµ)(DK Sκµ)

Fr = ∑
µ∈C

∑
κ∈K

∑
α∈A

∑
β∈B

Sβα(∆Pβκ∆Pαµ+∆Pακ∆Pβµ)(DCSµκ)

F2 = ∑
µ∈C

∑
κ∈K

∑
α∈A

∑
β∈B

SκµSβα(∆Pβκ∆Pαµ+∆Pακ∆Pβµ)

i f K 6= C

i f B 6= A

F = F ·γ2 +F2 · (DKγK A +DKγKB)

Fr = Fr ·γ2 +F2 · (DCγCA +DCγCB)

e l se

F = F ·γ1 +F2 ·DKγK A

Fr = Fr ·γ1 +F2 ·DCγCA

end i f

e lse

i f A 6= B

F = F +F2 · (DKγK A +DKγKB)

e l se

F = F +F2 ·DKγK A

end i f

end i f

FK = FK −0.25F

FC = FC −0.25Fr

end do

end do

end do

end do

122



BIBLIOGRAPHY

[1] C. ADAMO, M. ERNZERHOF, AND G. E. SCUSERIA, The meta-GGA functional: Thermo-

chemistry with a kinetic energy density dependent exchange-correlation functional, The

Journal of Chemical Physics, 112 (2000), pp. 2643–2649.

[2] Y. AKINAGA AND S. TEN-NO, Range-separation by the Yukawa potential in long-range

corrected density functional theory with Gaussian-type basis functions, Chemical Physics

Letters, 462 (2008), pp. 348–351.

[3] C.-O. ALMBLADH AND U. VON BARTH, Exact results for the charge and spin densities,

exchange-correlation potentials, and density-functional eigenvalues, Phys. Rev. B, 31

(1985), pp. 3231–3244.

[4] J. ALMLÖF, K. FAEGRI, AND K. KORSELL, Principles for a direct SCF approach to LICAO-

MO ab-initio calculations, Journal of Computational Chemistry, 3 (1982), pp. 385–399.

[5] E. ANDERSON, Z. BAI, C. BISCHOF, S. BLACKFORD, J. DEMMEL, J. DONGARRA,

J. DU CROZ, A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, AND D. SORENSEN,

LAPACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia,

PA, third ed., 1999.

[6] B. ARADI, B. HOURAHINE, AND T. FRAUENHEIM, DFTB+, a sparse matrix-based imple-

mentation of the DFTB method, J. Phys. Chem. A, 111 (2007), pp. 5678–5684.

[7] F. ARYASETIAWAN AND O. GUNNARSSON, The GW method, Reports on Progress in Physics,

61 (1998), p. 237.

[8] O. AYED, E. BERNARD, AND B. SILVI, On the Mulliken approximation of multicentre

integrals, Journal of Molecular Structure: THEOCHEM, 135 (1986), pp. 159–168.

[9] R. BAER, E. LIVSHITS, AND U. SALZNER, Tuned range-separated hybrids in density

functional theory, Annu. Rev. Phys. Chem., 61 (2010), pp. 85–109.

[10] R. BAER AND D. NEUHAUSER, Density functional theory with correct long-range asymptotic

behavior, Phys. Rev. Lett., 94 (2005), p. 043002.

123



BIBLIOGRAPHY

[11] T. BALLY AND G. N. SASTRY, Incorrect dissociation behavior of radical ions in density

functional calculations, The Journal of Physical Chemistry A, 101 (1997), pp. 7923–

7925.

[12] G. BARBARELLA, L. FAVARETTO, G. SOTGIU, M. ZAMBIANCHI, A. BONGINI, C. ARBIZZANI,

M. MASTRAGOSTINO, M. ANNI, G. GIGLI, AND R. CINGOLANI, Tuning solid-state

photoluminescence frequencies and efficiencies of oligomers containing one central

thiophene-S,S-dioxide unit, Journal of the American Chemical Society, 122 (2000),

pp. 11971–11978.

[13] A. D. BECKE, A multicenter numerical integration scheme for polyatomic molecules, The

Journal of Chemical Physics, 88 (1988), pp. 2547–2553.

[14] , Density-functional exchange-energy approximation with correct asymptotic behavior,

Phys. Rev. A, 38 (1988), pp. 3098–3100.

[15] , Density-functional thermochemistry. III. The role of exact exchange, The Journal of

Chemical Physics, 98 (1993), pp. 5648–5652.

[16] , Density-functional thermochemistry. IV. A new dynamical correlation functional and

implications for exact-exchange mixing, The Journal of Chemical Physics, 104 (1996),

pp. 1040–1046.

[17] , Real-space post-Hartree-Fock correlation models, The Journal of Chemical Physics,

122 (2005), p. 064101.

[18] A. D. BECKE AND R. M. DICKSON, Numerical solution of Poisson’s equation in polyatomic

molecules, The Journal of Chemical Physics, 89 (1988), pp. 2993–2997.

[19] W. G. BICKLEY, Math. Gaz., 25 (1941), p. 19.

[20] X. BLASE, C. ATTACCALITE, AND V. OLEVANO, First-principles GW calculations for

fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photo-

voltaic applications, Phys. Rev. B, 83 (2011), p. 115103.

[21] Z. BODROG, B. ARADI, AND T. FRAUENHEIM, Automated repulsive parametrization for the

DFTB method, Journal of Chemical Theory and Computation, 7 (2011), pp. 2654–2664.

[22] G. BOURHILL, J.-L. BREDAS, L.-T. CHENG, S. R. MARDER, F. MEYERS, J. W. PERRY,

AND B. G. TIEMANN, Experimental demonstration of the dependence of the first hyper-

polarizability of donor-acceptor-substituted polyenes on the ground-state polarization

and bond length alternation, Journal of the American Chemical Society, 116 (1994),

pp. 2619–2620.

124



BIBLIOGRAPHY

[23] C. J. BRABEC, N. S. SARICIFTCI, AND J. C. HUMMELEN, Plastic solar cells, Advanced

Functional Materials, 11 (2001), pp. 15–26.

[24] J. L. BREDAS, Relationship between band gap and bond length alternation in organic

conjugated polymers, The Journal of Chemical Physics, 82 (1985), pp. 3808–3811.

[25] J. L. BREDAS, R. R. CHANCE, AND R. SILBEY, Comparative theoretical study of the doping

of conjugated polymers: Polarons in polyacetylene and polyparaphenylene, Phys. Rev. B,

26 (1982), pp. 5843–5854.

[26] J. L. BREDAS AND G. B. STREET, Polarons, bipolarons, and solitons in conducting polymers,

Accounts of Chemical Research, 18 (1985), pp. 309–315.

[27] J. L. BREDAS, B. THEMANS, J. G. FRIPIAT, J. M. ANDRE, AND R. R. CHANCE, Highly

conducting polyparaphenylene, polypyrrole, and polythiophene chains: An ab initio

study of the geometry and electronic-structure modifications upon doping, Phys. Rev. B,

29 (1984), pp. 6761–6773.

[28] S. CAPPONI, N. GUIHERY, J.-P. MALRIEU, B. MIGUEL, AND D. POILBLANC, Bond alterna-

tion of polyacetylene as a spin-Peierls distortion, Chemical Physics Letters, 255 (1996),

pp. 238–243.

[29] M. E. CASIDA AND D. R. SALAHUB, Asymptotic correction approach to improving ap-

proximate exchange-correlation potentials: Time-dependent density-functional theory

calculations of molecular excitation spectra, The Journal of Chemical Physics, 113

(2000), pp. 8918–8935.

[30] D. M. CEPERLEY AND B. J. ALDER, Ground state of the electron gas by a stochastic method,

Phys. Rev. Lett., 45 (1980), pp. 566–569.

[31] B. CHAMPAGNE, E. A. PERPETE, S. J. A. VAN GISBERGEN, E.-J. BAERENDS, J. G.

SNIJDERS, C. SOUBRA-GHAOUI, K. A. ROBINS, AND B. KIRTMAN, Assessment of

conventional density functional schemes for computing the polarizabilities and hyperpo-

larizabilities of conjugated oligomers: An ab initio investigation of polyacetylene chains,

The Journal of Chemical Physics, 109 (1998), pp. 10489–10498.

[32] H. N. CHAPMAN, A. BARTY, M. J. BOGAN, S. BOUTET, M. FRANK, S. P. HAU-RIEGE,

S. MARCHESINI, B. W. WOODS, S. BAJT, AND W. H. BENNER, Femtosecond diffractive

imaging with a soft-x-ray free-electron laser, Nature Physics, 2 (2006), pp. 839–843.

[33] D. P. CHONG, O. V. GRITSENKO, AND E. J. BAERENDS, Interpretation of the Kohn-Sham

orbital energies as approximate vertical ionization potentials, The Journal of Chemical

Physics, 116 (2002), pp. 1760–1772.

125



BIBLIOGRAPHY

[34] A. J. COHEN, P. MORI-SANCHEZ, AND W. YANG, Challenges for density functional theory,

Chemical Reviews, 112 (2012), pp. 289–320.

[35] Q. CUI AND M. ELSTNER, Density functional tight binding: values of semi-empirical

methods in an ab initio era, Phys. Chem. Chem. Phys., 16 (2014), pp. 14368–14377.

[36] P. DEÁK, B. ARADI, T. FRAUENHEIM, E. JANZÉN, AND A. GALI, Accurate defect levels

obtained from the HSE06 range-separated hybrid functional, Phys. Rev. B, 81 (2010),

p. 153203.

[37] G. D. DICKENSON, M. L. NIU, E. J. SALUMBIDES, J. KOMASA, K. S. E. EIKEMA,

K. PACHUCKI, AND W. UBACHS, Fundamental vibration of molecular hydrogen, Phys.

Rev. Lett., 110 (2013), p. 193601.

[38] N. DORI, M. MENON, L. KILIAN, M. SOKOLOWSKI, L. KRONIK, AND E. UMBACH, Valence

electronic structure of gas-phase 3,4,9,10-perylene tetracarboxylic acid dianhydride:

Experiment and theory, Phys. Rev. B, 73 (2006), p. 195208.

[39] T. H. DUNNING, Gaussian basis sets for use in correlated molecular calculations. I. The

atoms boron through neon and hydrogen, The Journal of Chemical Physics, 90 (1989),

pp. 1007–1023.

[40] H. E. KATZ, Organic molecular solids as thin film transistor semiconductors, J. Mater.

Chem., 7 (1997), pp. 369–376.

[41] M. ELSTNER, Weiterentwicklung quantenmechanischer Rechenverfahren für organische

Muleküle und Polymere., PhD thesis, Universität Paderborn, 1998.

[42] M. ELSTNER, D. POREZAG, G. JUNGNICKEL, J. ELSNER, M. HAUGK, T. FRAUENHEIM,

S. SUHAI, AND G. SEIFERT, Self-consistent-charge density-functional tight-binding

method for simulations of complex materials properties, Phys. Rev. B, 58 (1998), pp. 7260–

7268.

[43] M. ELSTNER AND G. SEIFERT, Density functional tight binding, Philosophical Transactions

of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 (2014),

p. 20120483.

[44] ELSTNER M., The SCC-DFTB method and its application to biological systems, Theor.

Chem. Acc., 116 (2006), pp. 316–325.

[45] E. ENGEL AND R. N. SCHMID, Insulating ground states of transition-metal monoxides

from exact exchange, Phys. Rev. Lett., 103 (2009), p. 036404.

[46] H. ESCHRIG AND I. BERGERT, An optimized LCAO version for band structure calculations

application to copper, physica status solidi (b), 90 (1978), pp. 621–628.

126



BIBLIOGRAPHY

[47] D. G. FEDOROV, T. NAGATA, AND K. KITAURA, Exploring chemistry with the fragment

molecular orbital method, Phys. Chem. Chem. Phys., 14 (2012), pp. 7562–7577.

[48] J. FENN, M. MANN, C. MENG, S. WONG, AND C. WHITEHOUSE, Electrospray ionization

for mass spectrometry of large biomolecules, Science, 246 (1989), pp. 64–71.

[49] C. R. FINCHER, C. E. CHEN, A. J. HEEGER, A. G. MACDIARMID, AND J. B. HASTINGS,

Structural determination of the symmetry-breaking parameter in trans -(CH)x, Phys.

Rev. Lett., 48 (1982), pp. 100–104.

[50] T. FRAUENHEIM, G. SEIFERT, M. ELSTERNER, Z. HAJNAL, G. JUNGNICKEL, D. POREZAG,

S. SUHAI, AND R. SCHOLZ, A self-consistent charge density-functional based tight-

binding method for predictive materials simulations in physics, chemistry and biology,

physica status solidi (b), 217 (2000), pp. 41–62.

[51] F. GARNIER, R. HAJLAOUI, A. YASSAR, AND P. SRIVASTAVA, All-polymer field-effect

transistor realized by printing techniques, Science, 265 (1994), pp. 1684–1686.

[52] M. GAUS, Q. CUI, AND M. ELSTNER, DFTB3: Extension of the self-consistent-charge

density-functional tight-binding method (SCC-DFTB), Journal of Chemical Theory and

Computation, 7 (2011), pp. 931–948.

[53] I. C. GERBER AND J. G. ANGYAN, Hybrid functional with separated range, Chemical

Physics Letters, 415 (2005), pp. 100–105.

[54] P. M. W. GILL, R. D. ADAMASON, AND J. A. POPLE, Coulomb-attenuated exchange energy

density functionals, Molecular Physics, 88 (1996), pp. 1005–1009.

[55] X. GONZE, P. GHOSEZ, AND R. W. GODBY, Density-polarization functional theory of the

response of a periodic insulating solid to an electric field, Phys. Rev. Lett., 74 (1995),

pp. 4035–4038.

[56] C. M. GORINGE, D. R. BOWLER, AND E. HERNANDEZ, Tight-binding modelling of materi-

als, Reports on Progress in Physics, 60 (1997), p. 1447.

[57] A. GÖRLING, Density-functional theory for excited states, Phys. Rev. A, 54 (1996), pp. 3912–

3915.

[58] J. GRÄFENSTEIN, E. KRAKA, AND D. CREMER, The impact of the self-interaction error

on the density functional theory description of dissociating radical cations: Ionic and

covalent dissociation limits, The Journal of Chemical Physics, 120 (2004), pp. 524–539.

[59] B. GRUNDKÖTTER-STOCK, V. BEZUGLY, J. KUNSTMANN, G. CUNIBERTI, T. FRAUENHEIM,

AND T. A. NIEHAUS, SCC-DFTB parametrization for boron and boranes, Journal of

Chemical Theory and Computation, 8 (2012), pp. 1153–1163.

127



BIBLIOGRAPHY

[60] O. GUNNARSSON AND B. I. LUNDQVIST, Exchange and correlation in atoms, molecules, and

solids by the spin-density-functional formalism, Phys. Rev. B, 13 (1976), pp. 4274–4298.

[61] M. HALIK, H. KLAUK, U. ZSCHIESCHANG, G. SCHMID, S. PONOMARENKO, S. KIRCH-

MEYER, AND W. WEBER, Relationship between molecular structure and electrical

performance of oligothiophene organic thin film transistors, Advanced Materials, 15

(2003), pp. 917–922.

[62] G. G. HALL, The molecular orbital theory of chemical valency. VIII. a method of calculating

ionization potentials, Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 205 (1951), pp. 541–552.

[63] F. E. HARRIS, Analytic evaluation of two-center STO electron repulsion integrals via

ellipsoidal expansion, International Journal of Quantum Chemistry, 88 (2002), pp. 701–

734.

[64] M. HÄSER AND R. AHLRICHS, Improvements on the direct SCF method, Journal of Compu-

tational Chemistry, 10 (1989), pp. 104–111.

[65] W. HAYNES, CRC Handbook of Chemistry and Physics, 93rd Edition, CRC Handbook of

Chemistry and Physics, Taylor & Francis, 2012.

[66] L. HEDIN, New method for calculating the one-particle Green’s function with application to

the electron-gas problem, Phys. Rev., 139 (1965), pp. A796–A823.

[67] J. HEYD, G. SCUSERIA, AND M. ERNZERHOF, Hybrid functionals based on a screened

Coulomb potential, J. Chem. Phys., 118 (2003), p. 8207.

[68] J. HEYD AND G. E. SCUSERIA, Efficient hybrid density functional calculations in solids:

Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional, The

Journal of Chemical Physics, 121 (2004), pp. 1187–1192.

[69] J. HEYD, G. E. SCUSERIA, AND M. ERNZERHOF, Erratum: "Hybrid functionals based on a

screened Coulomb potential" [J. Chem. Phys.118, 8207 (2003)], The Journal of Chemical

Physics, 124 (2006), p. 219906.

[70] S. HIDEO, Y. MAEDA, AND M. KAMIYA, Influence of the long-range exchange effect on

dynamic polarizability, Molecular Physics, 103 (2005), pp. 2183–2189.

[71] C. HO CHOI, M. KERTESZ, AND A. KARPFEN, The effects of electron correlation on the

degree of bond alternation and electronic structure of oligomers of polyacetylene, The

Journal of Chemical Physics, 107 (1997), pp. 6712–6721.

[72] P. HOHENBERG AND W. KOHN, Inhomogeneous electron gas, Phys. Rev., 136 (1964),

pp. B864–B871.

128



BIBLIOGRAPHY

[73] H. H. HOMEIER AND E. STEINBORN, Some properties of the coupling coefficients of real

spherical harmonics and their relation to Gaunt coefficients, Journal of Molecular

Structure: THEOCHEM, 368 (1996), pp. 31–37.

[74] S. HONDA, K. YAMASAKI, Y. SAWADA, AND H. MORII, 10 residue folded peptide designed

by segment statistics, Structure, 12 (2004), pp. 1507–1518.

[75] H. HOPPE AND N. S. SARICIFTCI, Organic solar cells: An overview, Journal of Materials

Research, 19 (2004), pp. 1924–1945.

[76] A. P. HORSFIELD AND A. M. BRATKOVSKY, Ab initio tight binding, Journal of Physics:

Condensed Matter, 12 (2000), p. R1.

[77] B. HOURAHINE, S. SANNA, B. ARADI, C. KÖHLER, T. NIEHAUS, AND T. FRAUENHEIM,

Self-interaction and strong correlation in DFTB+, The Journal of Physical Chemistry A,

111 (2007), pp. 5671–5677.

[78] K. HUMMER, A. GRÜNEIS, AND G. KRESSE, Structural and electronic properties of lead

chalcogenides from first principles, Phys. Rev. B, 75 (2007), p. 195211.

[79] W. HUMPHREY, A. DALKE, AND K. SCHULTEN, VMD – Visual Molecular Dynamics,

Journal of Molecular Graphics, 14 (1996), pp. 33–38.

[80] G. R. HUTCHISON, Y.-J. ZHAO, B. DELLEY, A. J. FREEMAN, M. A. RATNER, AND T. J.

MARKS, Electronic structure of conducting polymers: Limitations of oligomer extrapola-

tion approximations and effects of heteroatoms, Phys. Rev. B, 68 (2003), p. 035204.

[81] H. IIKURA, T. TSUNEDA, T. YANAI, AND K. HIRAO, A long-range correction scheme for

generalized-gradient-approximation exchange functionals, J. Chem. Phys., 115 (2001),

p. 3540.

[82] D. JACQUEMIN AND C. ADAMO, Bond length alternation of conjugated oligomers: Wave

function and DFT benchmarks, Journal of Chemical Theory and Computation, 7 (2011),

pp. 369–376.

[83] D. JACQUEMIN, A. FEMENIAS, H. CHERMETTE, I. CIOFINI, C. ADAMO, J.-M. ANDRE, AND

E. A. PERPETE, Assessment of several hybrid DFT functionals for the evaluation of bond

length alternation of increasingly long oligomers, The Journal of Physical Chemistry A,

110 (2006), pp. 5952–5959.

[84] D. JACQUEMIN, E. A. PERPETE, I. CIOFINI, AND C. ADAMO, Assessment of recently

developed density functional approaches for the evaluation of the bond length alternation

in polyacetylene, Chemical Physics Letters, 405 (2005), pp. 376–381.

129



BIBLIOGRAPHY

[85] D. JACQUEMIN, E. A. PERPETE, G. SCALMANI, M. J. FRISCH, R. KOBAYASHI, AND

C. ADAMO, Assessment of the efficiency of long-range corrected functionals for some

properties of large compounds, The Journal of Chemical Physics, 126 (2007), p. 144105.

[86] M. JAIN, J. R. CHELIKOWSKY, AND S. G. LOUIE, Reliability of hybrid functionals in

predicting band gaps, Phys. Rev. Lett., 107 (2011), p. 216806.

[87] J. F. JANAK, Proof that ∂e
∂ni

= ε in density-functional theory, Phys. Rev. B, 18 (1978),

pp. 7165–7168.

[88] S. KAMINSKI, M. GAUS, AND M. ELSTNER, Improved electronic properties from third-order

SCC-DFTB with cost efficient post-SCF extensions, The Journal of Physical Chemistry

A, 116 (2012), pp. 11927–11937.

[89] S. KAMINSKI, T. J. GIESE, M. GAUS, D. M. YORK, AND M. ELSTNER, Extended polariza-

tion in third-order SCC-DFTB from chemical-potential equalization, The Journal of

Physical Chemistry A, 116 (2012), pp. 9131–9141.

[90] M. KAMIYA, H. SEKINO, T. TSUNEDA, AND K. HIRAO, Nonlinear optical property calcula-

tions by the long-range-corrected coupled-perturbed Kohn-Sham method, The Journal of

Chemical Physics, 122 (2005), p. 234111.

[91] R. KAR, J.-W. SONG, AND K. HIRAO, Long-range corrected functionals satisfy Koopmans’

theorem: Calculation of correlation and relaxation energies, Journal of Computational

Chemistry, 34 (2013), pp. 958–964.

[92] A. KAROLEWSKI, R. ARMIENTO, AND S. KÜMMEL, Polarizabilities of polyacetylene from a

field-counteracting semilocal functional, Journal of Chemical Theory and Computation,

5 (2009), pp. 712–718.

[93] A. KAROLEWSKI, L. KRONIK, AND S. KÜMMEL, Using optimally tuned range separated

hybrid functionals in ground-state calculations: Consequences and caveats, The Journal

of Chemical Physics, 138 (2013), p. 204115.

[94] F. KJELDSEN, O. A. SILIVRA, AND R. A. ZUBAREV, Zwitterionic states in gas-phase polypep-

tide ions revealed by 157-nm ultra-violet photodissociation, Chemistry - A European

Journal, 12 (2006), pp. 7920–7928.

[95] C. KÖHLER, T. FRAUENHEIM, B. HOURAHINE, G. SEIFERT, AND M. STERNBERG, Treat-

ment of collinear and noncollinear electron spin within an approximate density func-

tional based method, The Journal of Physical Chemistry A, 111 (2007), pp. 5622–5629.

[96] C. KOHLER, G. SEIFERT, U. GERSTMANN, M. ELSTNER, H. OVERHOF, AND T. FRAUEN-

HEIM, Approximate density-functional calculations of spin densities in large molecular

systems and complex solids, Phys. Chem. Chem. Phys., 3 (2001), pp. 5109–5114.

130



BIBLIOGRAPHY

[97] W. KOHN, Nobel lecture: Electronic structure of matter - wave functions and density func-

tionals, Rev. Mod. Phys., 71 (1999), pp. 1253–1266.

[98] W. KOHN AND L. J. SHAM, Self-consistent equations including exchange and correlation

effects, Phys. Rev., 140 (1965), pp. A1133–A1138.

[99] T. KÖRZDÖRFER, R. M. PARRISH, N. MAROM, J. S. SEARS, C. D. SHERRILL, AND J.-L.

BREDAS, Assessment of the performance of tuned range-separated hybrid density func-

tionals in predicting accurate quasiparticle spectra, Phys. Rev. B, 86 (2012), p. 205110.

[100] T. KÖRZDÖRFER, R. M. PARRISH, J. S. SEARS, C. D. SHERRILL, AND J.-L. BREDAS, On

the relationship between bond-length alternation and many-electron self-interaction

error, The Journal of Chemical Physics, 137 (2012), p. 124305.

[101] T. KÖRZDÖRFER, S. TRETIAK, AND S. KÜMMEL, Fluorescence quenching in an organic

donor-acceptor dyad: A first principles study, The Journal of Chemical Physics, 131

(2009), p. 034310.

[102] L. KRONIK, A. MAKMAL, M. L. TIAGO, M. M. G. ALEMANY, M. JAIN, X. HUANG, Y. SAAD,

AND J. R. CHELIKOWSKY, PARSEC - the pseudopotential algorithm for real-space

electronic structure calculations: Recent advances and novel applications to nano-

structures, physica status solidi (b), 243 (2006), pp. 1063–1079.

[103] L. KRONIK, T. STEIN, S. REFAELY-ABRAMSON, AND R. BAER, Excitation gaps of finite-

sized systems from optimally tuned range-separated hybrid functionals, Journal of

Chemical Theory and Computation, 8 (2012), pp. 1515–1531.

[104] T. KUBAR, Z. BODROG, M. GAUS, C. KÖHLER, B. ARADI, T. FRAUENHEIM, AND M. EL-

STNER, Parametrization of the SCC-DFTB method for halogens, Journal of Chemical

Theory and Computation, 9 (2013), pp. 2939–2949.

[105] S. KÜMMEL AND L. KRONIK, Orbital-dependent density functionals: Theory and applica-

tions, Rev. Mod. Phys., 80 (2008), pp. 3–60.

[106] S. KURTH, J. P. PERDEW, AND P. BLAHA, Molecular and solid-state tests of density

functional approximations: LSD, GGAs, and meta-GGAs, International Journal of

Quantum Chemistry, 75 (1999), pp. 889–909.

[107] D. LANGRETH AND J. PERDEW, The exchange-correlation energy of a metallic surface, Solid

State Communications, 17 (1975), pp. 1425–1429.

[108] V. LEBEDEV, Zh. Vychisl. Mat. Mat. Fiz., 15 (1975), p. 48.

[109] C. LEE, W. YANG, AND R. G. PARR, Development of the Colle-Salvetti correlation-energy

formula into a functional of the electron density, Phys. Rev. B, 37 (1988), pp. 785–789.

131



BIBLIOGRAPHY

[110] T. LEININGER, H. STOLL, H.-J. WERNER, AND A. SAVIN, Combining long-range configu-

ration interaction with short-range density functionals, Chem. Phys. Lett., 275 (1997),

p. 151.

[111] M. LEVY, Universal variational functionals of electron densities, first-order density matrices,

and natural spin-orbitals and solution of the v-representability problem, Proceedings of

the National Academy of Sciences, 76 (1979), pp. 6062–6065.

[112] , Electron densities in search of hamiltonians, Phys. Rev. A, 26 (1982), pp. 1200–1208.

[113] , Excitation energies from density-functional orbital energies, Phys. Rev. A, 52 (1995),

pp. R4313–R4315.

[114] S. M. LINDSAY AND M. A. RATNER, Molecular transport junctions: Clearing mists, Ad-

vanced Materials, 19 (2007), pp. 23–31.

[115] P. LINSTROM AND W. MALLARD, NIST chemistry webbook, NIST standard reference

database number 69, National Institute of Standards and Technology.

[116] E. LIVSHITS AND R. BAER, A well-tempered density functional theory of electrons in

molecules, Phys. Chem. Chem. Phys., 9 (2007), pp. 2932–2941.

[117] LONGUET-HIGGINS H. C. AND SALEM L., The alternation of bond lengths in long conju-

gated chain molecules, Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 251 (1959), pp. 172–185.

[118] M. LUNDBERG, Y. NISHIMOTO, AND S. IRLE, Delocalization errors in a Hubbard-like

model: Consequences for density-functional tight-binding calculations of molecular

systems, International Journal of Quantum Chemistry, 112 (2012), pp. 1701–1711.

[119] V. LUTSKER, B. ARADI, AND T. A. NIEHAUS, Implementation and benchmark of a long-

range corrected functional in the density functional based tight-binding method, ArXiv

e-prints, (2015).

[120] R. MARCHESE, R. GRANDORI, P. CARLONI, AND S. RAUGEI, On the zwitterionic nature of

gas-phase peptides and protein ions, PLoS Comput. Biol., 6 (2010), p. e1000775.

[121] S. R. MARDER, C. B. GORMAN, F. MEYERS, J. W. PERRY, G. BOURHILL, J.-L. BREDAS,

AND B. M. PIERCE, A unified description of linear and nonlinear polarization in organic

polymethine dyes, Science, 265 (1994), pp. 632–635.

[122] S. R. MARDER, J. W. PERRY, B. G. TIEMANN, C. B. GORMAN, S. GILMOUR, S. L. BIDDLE,

AND G. BOURHILL, Direct observation of reduced bond-length alternation in donor/ac-

ceptor polyenes, Journal of the American Chemical Society, 115 (1993), pp. 2524–2526.

132



BIBLIOGRAPHY

[123] N. MAROM, F. CARUSO, X. REN, O. T. HOFMANN, T. KÖRZDÖRFER, J. R. CHELIKOWSKY,

A. RUBIO, M. SCHEFFLER, AND P. RINKE, Benchmark of GW methods for azabenzenes,

Phys. Rev. B, 86 (2012), p. 245127.

[124] M. A. MARQUES, M. J. OLIVEIRA, AND T. BURNUS, Libxc: A library of exchange and

correlation functionals for density functional theory, Computer Physics Communications,

183 (2012), pp. 2272–2281.

[125] M. MARSMAN, J. PAIER, A. STROPPA, AND G. KRESSE, Hybrid functionals applied to

extended systems, Journal of Physics: Condensed Matter, 20 (2008), p. 064201.

[126] T. MEYER, V. GABELICA, H. GRUBMÜLLER, AND M. OROZCO, Proteins in the gas phase,

Wiley Interdisciplinary Reviews: Computational Molecular Science, 3 (2013), pp. 408–

425.

[127] U. MITSCHKE AND P. BAUERLE, The electroluminescence of organic materials, J. Mater.

Chem., 10 (2000), pp. 1471–1507.

[128] C. MØLLER AND M. S. PLESSET, Note on an approximation treatment for many-electron

systems, Phys. Rev., 46 (1934), pp. 618–622.

[129] M. B. MONAGAN, K. O. GEDDES, K. M. HEAL, G. LABAHN, S. M. VORKOETTER, J. MC-

CARRON, AND P. DEMARCO, Maple 10 Programming Guide, Maplesoft, Waterloo ON,

Canada, 2005.

[130] H. J. MONKHORST, Calculation of properties with the coupled-cluster method, International

Journal of Quantum Chemistry, 12 (1977), pp. 421–432.

[131] P. MORI-SANCHEZ, A. J. COHEN, AND W. YANG, Self-interaction-free exchange-correlation

functional for thermochemistry and kinetics, The Journal of Chemical Physics, 124

(2006), p. 091102.

[132] , Localization and delocalization errors in density functional theory and implications

for band-gap prediction, Phys. Rev. Lett., 100 (2008), p. 146401.

[133] G. MORO, G. SCALMANI, U. COSENTINO, AND D. PITEA, On the structure of bipolaronic

defects in thiophene oligomers: A density functional study, Synthetic Metals, 92 (1998),

pp. 69–73.

[134] , On the structure of polaronic defects in thiophene oligomers: A combined Hartree-Fock

and density functional theory study, Synthetic Metals, 108 (2000), pp. 165–172.

[135] T. NAGATA, K. BRORSEN, D. G. FEDOROV, K. KITAURA, AND M. S. GORDON, Fully

analytic energy gradient in the fragment molecular orbital method, The Journal of

Chemical Physics, 134 (2011), p. 124115.

133



BIBLIOGRAPHY

[136] J. W. NEIDIGH, R. M. FESINMEYER, AND N. H. ANDERSEN, Designing a 20-residue

protein, Nat Struct Mol Biol, 9 (2002), pp. 425–430.

[137] T. NIEHAUS AND F. DELLA SALA, Range-separated functionals in the density-functional

based tight-binding method: Formalism, physica status solidi (b), 249 (2012), p. 237.

[138] T. A. NIEHAUS, A. DI CARLO, AND T. FRAUENHEIM, Effect of self-consistency and electron

correlation on the spatial extension of bipolaronic defects, Org. Elec., 5 (2004), pp. 167–

174.

[139] T. A. NIEHAUS, M. ELSTNER, T. FRAUENHEIM, AND S. SUHAI, Application of an ap-

proximate density-functional method to sulfur containing compounds, J. Mol. Struct. -

Theochem, 541 (2001), pp. 185–194.

[140] Y. NISHIMOTO, D. G. FEDOROV, AND S. IRLE, Density-functional tight-binding combined

with the fragment molecular orbital method, Journal of Chemical Theory and Computa-

tion, 10 (2014), pp. 4801–4812.

[141] Y. NISHIMOTO AND S. IRLE.

private communication.

[142] J. PAIER, M. MARSMAN, K. HUMMER, G. KRESSE, I. C. GERBER, AND J. G. ANGYAN,

Screened hybrid density functionals applied to solids, The Journal of Chemical Physics,

124 (2006), p. 154709.

[143] R. PARR AND W. YANG, Density-functional theory of atoms and molecules, International

Series of Monographs on Chemistry, Oxford University Press, USA, 1989.

[144] A. PATRIKSSON, C. M. ADAMS, F. KJELDSEN, R. A. ZUBAREV, AND D. VAN DER SPOEL, A

direct comparison of protein structure in the gas and solution phase: The Trp-cage, The

Journal of Physical Chemistry B, 111 (2007), pp. 13147–13150.

[145] J. E. PERALTA, J. HEYD, G. E. SCUSERIA, AND R. L. MARTIN, Spin-orbit splittings

and energy band gaps calculated with the Heyd-Scuseria-Ernzerhof screened hybrid

functional, Phys. Rev. B, 74 (2006), p. 073101.

[146] J. P. PERDEW, K. BURKE, AND M. ERNZERHOF, Generalized gradient approximation made

simple, Phys. Rev. Lett., 77 (1996), pp. 3865–3868.

[147] J. P. PERDEW, M. ERNZERHOF, AND K. BURKE, Rationale for mixing exact exchange

with density functional approximations, The Journal of Chemical Physics, 105 (1996),

pp. 9982–9985.

134



BIBLIOGRAPHY

[148] J. P. PERDEW, R. G. PARR, M. LEVY, AND J. L. BALDUZ, Density-functional theory for

fractional particle number: Derivative discontinuities of the energy, Phys. Rev. Lett., 49

(1982), pp. 1691–1694.

[149] J. P. PERDEW, A. RUZSINSZKY, G. I. CSONKA, O. A. VYDROV, G. E. SCUSERIA, V. N.

STAROVEROV, AND J. TAO, Exchange and correlation in open systems of fluctuating

electron number, Phys. Rev. A, 76 (2007), p. 040501.

[150] J. P. PERDEW AND A. ZUNGER, Self-interaction correction to density-functional approxi-

mations for many-electron systems, Phys. Rev. B, 23 (1981), pp. 5048–5079.

[151] I. PEREPICHKA, D. PEREPICHKA, H. MENG, AND F. WUDL, Light-emitting polythiophenes,

Advanced Materials, 17 (2005), pp. 2281–2305.

[152] D. PINCHON AND P. E. HOGGAN, New index functions for storing Gaunt coefficients,

International Journal of Quantum Chemistry, 107 (2007), pp. 2186–2196.

[153] J. A. POPLE, D. L. BEVERIDGE, AND P. A. DOBOSH, Approximate self-consistent molecular-

orbital theory. V. intermediate neglect of differential overlap, The Journal of Chemical

Physics, 47 (1967), pp. 2026–2033.

[154] J. A. POPLE AND G. A. SEGAL, Approximate self-consistent molecular orbital theory. II.

calculations with complete neglect of differential overlap, The Journal of Chemical

Physics, 43 (1965), pp. S136–S151.

[155] D. POREZAG, T. FRAUENHEIM, T. KÖHLER, G. SEIFERT, AND R. KASCHNER, Construction

of tight-binding-like potentials on the basis of density-functional theory: Application to

carbon, Phys. Rev. B, 51 (1995), pp. 12947–12957.

[156] W. D. PRICE, R. A. JOCKUSCH, AND E. R. WILLIAMS, Is arginine a zwitterion in the gas

phase?, J. Am. Chem. Soc., 119 (1997), pp. 11988–11989.

[157] A. RAMASUBRAMANIAM, D. NAVEH, AND E. TOWE, Tunable band gaps in bilayer

transition-metal dichalcogenides, Phys. Rev. B, 84 (2011), p. 205325.

[158] M. RAPACIOLI, F. SPIEGELMAN, A. SCEMAMA, AND A. MIRTSCHINK, Modeling charge res-

onance in cationic molecular clusters: Combining DFT-tight binding with configuration

interaction, Journal of Chemical Theory and Computation, 7 (2011), pp. 44–55.

[159] J. RASCH AND A. C. H. YU, Efficient storage scheme for precalculated Wigner 3j, 6j and

Gaunt coefficients, SIAM Journal on Scientific Computing, 25 (2004), pp. 1416–1428.

[160] S. REFAELY-ABRAMSON, R. BAER, AND L. KRONIK, Fundamental and excitation gaps in

molecules of relevance for organic photovoltaics from an optimally tuned range-separated

hybrid functional, Phys. Rev. B, 84 (2011), p. 075144.

135



BIBLIOGRAPHY

[161] S. REFAELY-ABRAMSON, S. SHARIFZADEH, N. GOVIND, J. AUTSCHBACH, J. B. NEATON,

R. BAER, AND L. KRONIK, Quasiparticle spectra from a nonempirical optimally tuned

range-separated hybrid density functional, Phys. Rev. Lett., 109 (2012), p. 226405.

[162] J. E. ROBINSON, F. BASSANI, R. S. KNOX, AND J. R. SCHRIEFFER, Screening correction to

the Slater exchange potential, Phys. Rev. Lett., 9 (1962), pp. 215–217.

[163] M. A. ROHRDANZ, K. M. MARTINS, AND J. M. HERBERT, A long-range-corrected density

functional that performs well for both ground-state properties and time-dependent

density functional theory excitation energies, including charge-transfer excited states,

The Journal of Chemical Physics, 130 (2009), p. 054112.

[164] C. C. J. ROOTHAAN, New developments in molecular orbital theory, Rev. Mod. Phys., 23

(1951), pp. 69–89.

[165] , Self-consistent field theory for open shells of electronic systems, Rev. Mod. Phys., 32

(1960), pp. 179–185.

[166] C. C. J. ROOTHAAN, L. M. SACHS, AND A. W. WEISS, Analytical self-consistent field

functions for the atomic configurations 1s2, 1s22s, and 1s22s2, Rev. Mod. Phys., 32

(1960), pp. 186–194.

[167] E. RUNGE AND E. K. U. GROSS, Density-functional theory for time-dependent systems,

Phys. Rev. Lett., 52 (1984), pp. 997–1000.

[168] U. SALZNER, J. B. LAGOWSKI, P. G. PICKUP, AND R. A. POIRIER, Design of low band gap

polymers employing density functional theory-hybrid functionals ameliorate band gap

problem, Journal of Computational Chemistry, 18 (1997), pp. 1943–1953.

[169] U. SALZNER, P. G. PICKUP, R. A. POIRIER, AND J. B. LAGOWSKI, Accurate method for

obtaining band gaps in conducting polymers using a DFT/hybrid approach, The Journal

of Physical Chemistry A, 102 (1998), pp. 2572–2578.

[170] J. SAUTHER, J. WÜSTEN, S. LACH, AND C. ZIEGLER, Gas phase and bulk ultraviolet

photoemission spectroscopy of 3,4,9,10-perylene-tetracarboxylic dianhydride, 1,4,5,8-

naphthalene-tetracarboxylic dianhydride, and 1,8-naphthalene-dicarboxylic anhydride,

The Journal of Chemical Physics, 131 (2009), p. 034711.

[171] A. SAVIN AND H.-J. FLAD, Density functionals for the Yukawa electron-electron interaction,

International Journal of Quantum Chemistry, 56 (1995), pp. 327–332.

[172] B. M. SAVOIE, N. E. JACKSON, T. J. MARKS, AND M. A. RATNER, Reassessing the use of

one-electron energetics in the design and characterization of organic photovoltaics, Phys.

Chem. Chem. Phys., 15 (2013), pp. 4538–4547.

136



BIBLIOGRAPHY

[173] K. SCHULTEN AND R. GORDON, Recursive evaluation of 3j and 6j coefficients, Computer

Physics Communications, 11 (1976), pp. 269–278.

[174] A. SEIDL, A. GÖRLING, P. VOGL, J. A. MAJEWSKI, AND M. LEVY, Generalized Kohn-Sham

schemes and the band-gap problem, Phys. Rev. B, 53 (1996), pp. 3764–3774.

[175] G. SEIFERT, H. ESCHRIG, AND W. BIEGER, Z. Phys. Chem. (Leipzig), 267 (1986), p. 529.

[176] H. SEKINO, Y. MAEDA, M. KAMIYA, AND K. HIRAO, Polarizability and second hyperpolar-

izability evaluation of long molecules by the density functional theory with long-range

correction, The Journal of Chemical Physics, 126 (2007), p. 014107.

[177] M. SETH AND T. ZIEGLER, Range-separated exchange functionals with Slater-type functions,

Journal of Chemical Theory and Computation, 8 (2012), pp. 901–907.

[178] S. SHARIFZADEH, A. BILLER, L. KRONIK, AND J. B. NEATON, Quasiparticle and optical

spectroscopy of the organic semiconductors pentacene and ptcda from first principles,

Phys. Rev. B, 85 (2012), p. 125307.

[179] R. T. SHARP AND G. K. HORTON, A variational approach to the unipotential many-electron

problem, Phys. Rev., 90 (1953), pp. 317–317.

[180] K. B. SHELIMOV, D. E. CLEMMER, R. R. HUDGINS, AND M. F. JARROLD, Protein structure

in vacuo: Gas-phase conformations of BPTI and cytochrome c, Journal of the American

Chemical Society, 119 (1997), pp. 2240–2248.

[181] C. D. SHERRILL AND H. SCHAEFER, The configuration interaction method: Advances in

highly correlated approaches, Advances in Quantum Chemistry, 34 (1999), pp. 143–269.

[182] S. I. SIMDYANKIN, T. A. NIEHAUS, G. NATARAJAN, T. FRAUENHEIM, AND S. R. ELLIOTT,

New type of charged defect in amorphous chalcogenides, Phys. Rev. Lett., 94 (2005),

p. 086401.

[183] J. C. SLATER AND G. F. KOSTER, Simplified LCAO method for the periodic potential

problem, Phys. Rev., 94 (1954), pp. 1498–1524.

[184] J. M. SMITH, Y. JAMI ALAHMADI, AND C. N. ROWLEY, Range-separated DFT function-

als are necessary to model Thio-Michael additions, Journal of Chemical Theory and

Computation, 9 (2013), pp. 4860–4865.

[185] P. J. STEPHENS, F. J. DEVLIN, C. F. CHABALOWSKI, AND M. J. FRISCH, Ab initio calcula-

tion of vibrational absorption and circular dichroism spectra using density functional

force fields, The Journal of Physical Chemistry, 98 (1994), pp. 11623–11627.

137



BIBLIOGRAPHY

[186] W. P. SU, J. R. SCHRIEFFER, AND A. J. HEEGER, Solitons in polyacetylene, Phys. Rev.

Lett., 42 (1979), pp. 1698–1701.

[187] R. SUENRAM AND F. LOVAS, Millimeter wave spectrum of glycine. A new conformer, J. Am.

Chem. Soc., 102 (1980), pp. 7180–7184.

[188] H. SUN AND J. AUTSCHBACH, Influence of the delocalization error and applicability of opti-

mal functional tuning in density functional calculations of nonlinear optical properties

of organic donor-acceptor chromophores, ChemPhysChem, 14 (2013), pp. 2450–2461.

[189] , Electronic energy gaps for π-conjugated oligomers and polymers calculated with

density functional theory, Journal of Chemical Theory and Computation, 10 (2014),

pp. 1035–1047.

[190] M. TAKAHASHI AND J. PALDUS, Bond-length alternation and vibrational spectra of poly-

acetylene, Canadian Journal of Physics, 62 (1984), pp. 1226–1231.

[191] J. D. TALMAN AND W. F. SHADWICK, Optimized effective atomic central potential, Phys.

Rev. A, 14 (1976), pp. 36–40.

[192] W. M. TEMMERMAN, Z. SZOTEK, AND H. WINTER, Self-interaction-corrected electronic

structure of La2CuO4, Phys. Rev. B, 47 (1993), pp. 11533–11536.

[193] D. J. TOZER AND N. C. HANDY, Improving virtual Kohn-Sham orbitals and eigenvalues:

Application to excitation energies and static polarizabilities, The Journal of Chemical

Physics, 109 (1998), pp. 10180–10189.

[194] G. TU, V. CARRAVETTA, O. VAHTRAS, AND H. AGREN, Core ionization potentials from

self-interaction corrected Kohn-Sham orbital energies, The Journal of Chemical Physics,

127 (2007), p. 174110.

[195] M. VALIEV, E. J. BYLASKA, N. GOVIND, K. KOWALSKI, T. P. STRAATSMA, H. J. VAN DAM,

D. WANG, J. NIEPLOCHA, E. APRA, T. L. WINDUS, AND W. A. DE JONG, NWChem: A

comprehensive and scalable open-source solution for large scale molecular simulations,

Comput. Phys. Commun., 181 (2010), pp. 1477–1489.

[196] S. J. A. VAN GISBERGEN, P. R. T. SCHIPPER, O. V. GRITSENKO, E. J. BAERENDS, J. G.

SNIJDERS, B. CHAMPAGNE, AND B. KIRTMAN, Electric field dependence of the exchange-

correlation potential in molecular chains, Phys. Rev. Lett., 83 (1999), pp. 694–697.

[197] S. H. VOSKO, L. WILK, AND M. NUSAIR, Accurate spin-dependent electron liquid correla-

tion energies for local spin density calculations: a critical analysis, Canadian Journal of

Physics, 58 (1980), pp. 1200–1211.

138



BIBLIOGRAPHY

[198] O. A. VYDROV AND G. E. SCUSERIA, Assessment of a long-range corrected hybrid functional,

The Journal of Chemical Physics, 125 (2006), p. 234109.

[199] M. WEIMER, F. DELLA SALA, AND A. GÖRLING, The Kohn-Sham treatment of anions via

the localized Hartree-Fock method, Chemical Physics Letters, 372 (2003), pp. 538–547.

[200] T. YANAI, D. P. TEW, AND N. C. HANDY, A new hybrid exchange-correlation functional

using the Coulomb-attenuating method (CAM-B3LYP), Chemical Physics Letters, 393

(2004), pp. 51–57.

[201] W. YANG, Generalized adiabatic connection in density functional theory, The Journal of

Chemical Physics, 109 (1998), pp. 10107–10110.

[202] C. S. YANNONI AND T. C. CLARKE, Molecular geometry of cis- and trans-polyacetylene by

nutation NMR spectroscopy, Phys. Rev. Lett., 51 (1983), pp. 1191–1193.

[203] S. S. ZADE AND M. BENDIKOV, From oligomers to polymer: Convergence in the HOMO-

LUMO gaps of conjugated oligomers, Organic Letters, 8 (2006), pp. 5243–5246.

[204] , Theoretical study of long oligothiophene dications: Bipolaron vs polaron pair vs triplet

state, The Journal of Physical Chemistry B, 110 (2006), pp. 15839–15846.

[205] Y. ZHANG AND W. YANG, A challenge for density functionals: Self-interaction error increases

for systems with a noninteger number of electrons, The Journal of Chemical Physics,

109 (1998), pp. 2604–2608.

139





ACKNOWLEDGEMENTS

In following I would like to thank

• Prof. Dr. Thomas Niehaus

for providing me an opportunity to work on this exciting topic. His excellent supervision

was essential for the success of the project.

• Dr. Balint Aradi

for his support and useful discussions regarding the implementation of the Range-Separated

Hybrids in the DFTB+ code.

• Dr. Manohar Awasthi

for technical support and sage advise.

• Prof. Dr. Klaus Richter

for refereeing this thesis.

• Robert Hrdina, Angela Reisser and Toni Bienert

for support in administrative issues.

• Deutsche Forschungsgemeinschaft (RTG 1570)

and President of Universität Regensburg (Prof. Dr. Udo Hebel)

for financial support.

Finally I thank my parents and my brother for their patience and help.





ERRATUM

Changes with respect to the refereed version

(Änderungen gegenüber der Abgabe der Dissertation):

• Added Acknowledgements

• p. 108, Eq. A.12: added missed factor 2

• p. 80, Fig. 7.2: label y-axis |εH |− |IP| instead of |IP|− |εH |

• p. 80, bottom: ∆= |εHOMO|− |IPexp| instead of ∆= |IPexp|− |εHOMO|
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