450 research outputs found
Ideal MHD theory of low-frequency Alfven waves in the H-1 Heliac
A part analytical, part numerical ideal MHD analysis of low-frequency Alfven
wave physics in the H-1 stellarator is given. The three-dimensional,
compressible ideal spectrum for H-1 is presented and it is found that despite
the low beta (approx. 10^-4) of H-1 plasmas, significant Alfven-acoustic
interactions occur at low frequencies. Several quasi-discrete modes are found
with the three-dimensional linearised ideal MHD eigenmode solver CAS3D,
including beta-induced Alfven eigenmode (BAE)- type modes in beta-induced gaps.
The strongly shaped, low-aspect ratio magnetic geometry of H-1 causes CAS3D
convergence difficulties requiring the inclusion of many Fourier harmonics for
the parallel component of the fluid displacement eigenvector even for shear
wave motions. The highest beta-induced gap reproduces large parts of the
observed configurational frequency dependencies in the presence of hollow
temperature profiles
Recommended from our members
Theory of Resonance Influence of Sawtooth Crashes on Ions with Large Orbit Width
The role of resonances in the sawtooth-crash-induced redistribution of fast ions is investigated. In particular, the conditions of wave-particle resonant interaction in the presence of the equilibrium electric field and the mode rotation are obtained, and effects of sawteeth on the resonant particles with arbitrary width of non-perturbed orbits are studied. It is found that resonances play the dominant role in the transport of ions having sufficiently high energy. It is shown that the resonance regions may overlap, in which case the resonant particles may constitute the main fraction of the fast ion population in the sawtooth mixing region. The behavior of the resonant particles is studied both by constructing a PoincarΓ© map and analytically, by means of the adiabatic invariant derived in this paper and calculation of the characteristic frequencies of the particle motion
Student Dance Festival as a Kind of Integration of Sports and Art
Π¦Π΅Π»ΡΡ Π½Π°ΡΡΠΎΡΡΠ΅Π³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π°Π½Π°Π»ΠΈΠ·Π° Π‘ΡΡΠ΄Π΅Π½ΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π½ΡΠ΅Π²Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΡΠΈΠ²Π°Π»Ρ Student Dance Fest, ΠΊΠΎΡΠΎΡΡΠΉ, Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ Ρ 2012 Π³., ΡΠΎΡΡΠΎΡΠ»ΡΡ ΡΠΆΠ΅ 9 ΡΠ°Π·, Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠ°Π½ΡΠ° ΠΊΠ°ΠΊ Π²ΠΈΠ΄Π° ΡΠΏΠΎΡΡΠ° ΠΈ ΡΠ°ΡΡΠΈ ΠΈΡΠΊΡΡΡΡΠ²Π°, ΠΈΡ
Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΡΠΉ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠ° ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²ΠΎΠΏΠ»ΠΎΡΠ΅Π½ΠΈΡ Π²ΡΠ΄Π²ΠΈΠ½ΡΡΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ Π°Π½Π°Π»ΠΈΠ·Π° ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ², Π°Π½Π°Π»ΠΈΠ· Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΠ²ΡΡ. Π‘Π΄Π΅Π»Π°Π½ Π²ΡΠ²ΠΎΠ΄ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΡΠΏΠΎΡΡ ΠΈ ΠΈΡΠΊΡΡΡΡΠ²ΠΎ β Π½Π΅ΠΎΡΡΠ΅ΠΌΠ»Π΅ΠΌΡΠ΅ ΡΠ°ΡΡΠΈ Π΄ΡΡΠ³ Π΄ΡΡΠ³Π°, Π²Π΅Π΄Ρ ΡΡΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±ΡΠ°Π·ΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠ΅ΠΉ, ΠΎΡΠΊΡΡΡΠΈΠ΅ Π½ΠΎΠ²ΡΡ
Π³ΡΠ°Π½Π΅ΠΉ, ΠΎΡΠ½ΠΎΠ²Π° Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ Π΄ΡΡΠΈ ΠΈ ΡΠ΅Π»Π°.The purpose of this study is to analyze the Student Dance Festival βStudent Dance Festβ, which, since 2012, has already been held 9 times, as a reflection of dance as a sport and part of art, their direct relationship, as well as an example of the practical implementation of the theory put forward. Methods of analysis of theoretical sources, analysis of activities and individual interviews were used. It is concluded that sport and art are integral parts of each other, because it is a variety of possibilities, the discovery of new facets, the basis of the harmonious existence of soul and body
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΠΈ ΠΊΠΎΡΠΎΡΠΊΠΎΠ·Π°ΠΌΠΊΠ½ΡΡΠΎΠΉ ΠΎΠ±ΠΌΠΎΡΠΊΠΈ ΡΠΎΡΠΎΡΠ° Π°ΡΠΈΠ½Ρ ΡΠΎΠ½Π½ΡΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΠ»Π°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°
Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΈ Ρ
ΠΈΠΌΡΠΎΡΡΠ°Π²Π° Π°Π»ΡΠΌΠΈΠ½ΠΈΡ ΠΏΡΠΈ Π·Π°Π»ΠΈΠ²ΠΊΠ΅, Π΄Π»ΠΈΠ½Ρ ΠΏΠ°ΠΊΠ΅ΡΠΎΠ² ΠΈ ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°Π·ΠΎΠ² ΡΠΎΡΠΎΡΠΎΠ² Π½Π° ΡΠ΄Π΅Π»ΡΠ½ΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΡ Π°Π»ΡΠΌΠΈΠ½ΠΈΡ ΠΊΠΎΡΠΎΡΠΊΠΎΠ·Π°ΠΌΠΊΠ½ΡΡΠΎΠΉ ΠΎΠ±ΠΌΠΎΡΠΊΠΈ ΡΠΎΡΠΎΡΠΎΠ² Π°ΡΠΈΠ½Ρ
ΡΠΎΠ½Π½ΡΡ
Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΠ±ΡΠ°Π½ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎ-ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ. Π‘ΠΎΡΡΠ°Π²Π»Π΅Π½ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΠΉ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΡΠΉ ΡΠΎΡΠ°ΡΠ°Π±Π΅Π»ΡΠ½ΡΠΉ ΡΠ½ΠΈΡΠΎΡΠΌΠΏΠ»Π°Π½ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°. ΠΠ»Ρ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠ»Π°Π½Π° ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΎ 116 ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΡΠΎΡΠΎΡΠΎΠ² Π½Π° Π±Π°Π·Π΅ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ ΡΠ΅ΡΠΈΠΉ ΠΠ ΠΈ ΠΠ2. Π£Π΄Π΅Π»ΡΠ½Π°Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅ΡΡΠ»Π°ΡΡ ΠΏΡΠΈΠ±ΠΎΡΠΎΠΌ ΡΠΈΠΏΠ° ΠΠ-1 Π½Π° Π²Π΅Π½ΡΠΈΠ»ΡΡΠΈΠΎΠ½Π½ΡΡ
ΠΊΡΡΠ»ΡΡΡ
, ΠΊΠΎΡΠΎΡΠΊΠΎΠ·Π°ΠΌΡΠΊΠ°ΡΡΠΈΡ
ΠΊΠΎΠ»ΡΡΠ°Ρ
ΠΈ Π½Π° ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½Π½ΡΡ
ΠΈΠ· ΡΠΎΡΠΎΡΠΎΠ² ΡΡΠ΅ΡΠΆΠ½ΡΡ
ΠΎΠ±ΠΌΠΎΡΠΊΠΈ. ΠΡΠ΅Π³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΎ 4292 Π·Π°ΠΌΠ΅ΡΠ°. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ Π² Π²ΠΈΠ΄Π΅ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΎΠ² Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎ Π΄Π»Ρ ΠΊΠΎΡΠΎΡΠΊΠΎΠ·Π°ΠΌΡΠΊΠ°ΡΡΠΈΡ
ΠΊΠΎΠ»Π΅Ρ ΠΈ ΡΡΠ΅ΡΠΆΠ½Π΅ΠΉ ΠΎΠ±ΠΌΠΎΡΠΊΠΈ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ° ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π½Π° Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎΡΡΡ ΠΏΠΎ F-ΠΊΡΠΈΡΠ΅ΡΠΈΡ Π€ΠΈΡΠ΅ΡΠ° ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π½Π° Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ ΠΏΠΎ ΠΊΡΠΈΡΠ΅ΡΠΈΡ Π‘ΡΡΡΠ΄Π΅Π½ΡΠ°. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΡΡΠ΅ΡΡΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠ²Π½ΠΎ-ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΠΊΡΠΎΡΡ ΠΏΡΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π°ΡΠΈΠ½Ρ
ΡΠΎΠ½Π½ΡΡ
Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ, Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΠΌ, ΠΈ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΡΠΎΡΠ½ΠΎΡΡΡ ΡΠ°ΡΡΠ΅ΡΠ° ΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ
- β¦