37 research outputs found

    Alterations in white matter microstructure in neurofibromatosis-1.

    Get PDF
    Neurofibromatosis (NF1) represents the most common single gene cause of learning disabilities. NF1 patients have impairments in frontal lobe based cognitive functions such as attention, working memory, and inhibition. Due to its well-characterized genetic etiology, investigations of NF1 may shed light on neural mechanisms underlying such difficulties in the general population or other patient groups. Prior neuroimaging findings indicate global brain volume increases, consistent with neural over-proliferation. However, little is known about alterations in white matter microstructure in NF1. We performed diffusion tensor imaging (DTI) analyses using tract-based spatial statistics (TBSS) in 14 young adult NF1 patients and 12 healthy controls. We also examined brain volumetric measures in the same subjects. Consistent with prior studies, we found significantly increased overall gray and white matter volume in NF1 patients. Relative to healthy controls, NF1 patients showed widespread reductions in white matter integrity across the entire brain as reflected by decreased fractional anisotropy (FA) and significantly increased absolute diffusion (ADC). When radial and axial diffusion were examined we found pronounced differences in radial diffusion in NF1 patients, indicative of either decreased myelination or increased space between axons. Secondary analyses revealed that FA and radial diffusion effects were of greatest magnitude in the frontal lobe. Such alterations of white matter tracts connecting frontal regions could contribute to the observed cognitive deficits. Furthermore, although the cellular basis of these white matter microstructural alterations remains to be determined, our findings of disproportionately increased radial diffusion against a background of increased white matter volume suggest the novel hypothesis that one potential alteration contributing to increased cortical white matter in NF1 may be looser packing of axons, with or without myelination changes. Further, this indicates that axial and radial diffusivity can uniquely contribute as markers of NF1-associated brain pathology in conjunction with the typically investigated measures

    Disentangling disorders of consciousness: Insights from diffusion tensor imaging and machine learning

    Get PDF
    Previous studies have suggested that disorders of consciousness (DOC) after severe brain injury may result from disconnections of the thalamo-cortical system. However, thalamo-cortical connectivity differences between vegetative state (VS), minimally conscious state minus (MCS−, i.e., low-level behavior such as visual pursuit), and minimally conscious state plus (MCS+, i.e., high-level behavior such as language processing) remain unclear. Probabilistic tractography in a sample of 25 DOC patients was employed to assess whether structural connectivity in various thalamo-cortical circuits could differentiate between VS, MCS−, and MCS+ patients. First, the thalamus was individually segmented into seven clusters based on patterns of cortical connectivity and tested for univariate differences across groups. Second, reconstructed whole-brain thalamic tracks were used as features in a multivariate searchlight analysis to identify regions along the tracks that were most informative in distinguishing among groups. At the univariate level, it was found that VS patients displayed reduced connectivity in most thalamo-cortical circuits of interest, including frontal, temporal, and sensorimotor connections, as compared with MCS+, but showed more pulvinar-occipital connections when compared with MCS−. Moreover, MCS− exhibited significantly less thalamo-premotor and thalamo-temporal connectivity than MCS+. At the multivariate level, it was found that thalamic tracks reaching frontal, parietal, and sensorimotor regions, could discriminate, up to 100% accuracy, across each pairwise group comparison. Together, these findings highlight the role of thalamo-cortical connections in patients\u27 behavioral profile and level of consciousness. Diffusion tensor imaging combined with machine learning algorithms could thus potentially facilitate diagnostic distinctions in DOC and shed light on the neural correlates of consciousness. Hum Brain Mapp 38:431–443, 2017. © 2016 Wiley Periodicals, Inc

    Thalamic atrophy in antero-medial and dorsal nuclei correlates with six-month outcome after severe brain injury.

    Get PDF
    The primary and secondary damage to neural tissue inflicted by traumatic brain injury is a leading cause of death and disability. The secondary processes, in particular, are of great clinical interest because of their potential susceptibility to intervention. We address the dynamics of tissue degeneration in cortico-subcortical circuits after severe brain injury by assessing volume change in individual thalamic nuclei over the first six-months post-injury in a sample of 25 moderate to severe traumatic brain injury patients. Using tensor-based morphometry, we observed significant localized thalamic atrophy over the six-month period in antero-dorsal limbic nuclei as well as in medio-dorsal association nuclei. Importantly, the degree of atrophy in these nuclei was predictive, even after controlling for full-brain volume change, of behavioral outcome at six-months post-injury. Furthermore, employing a data-driven decision tree model, we found that physiological measures, namely the extent of atrophy in the anterior thalamic nucleus, were the most predictive variables of whether patients had regained consciousness by six-months, followed by behavioral measures. Overall, these findings suggest that the secondary non-mechanical degenerative processes triggered by severe brain injury are still ongoing after the first week post-trauma and target specifically antero-medial and dorsal thalamic nuclei. This result therefore offers a potential window of intervention, and a specific target region, in agreement with the view that specific cortico-thalamo-cortical circuits are crucial to the maintenance of large-scale network neural activity and thereby the restoration of cognitive function after severe brain injury

    The subcortical basis of outcome and cognitive impairment in TBI: A longitudinal cohort study.

    No full text
    ObjectiveTo understand how, biologically, the acute event of traumatic brain injury gives rise to a long-term disease, we address the relationship between evolving cortical and subcortical brain damage and measures of functional outcome and cognitive functioning at 6 months after injury.MethodsFor this longitudinal analysis, clinical and MRI data were collected in a tertiary neurointensive care setting in a continuous sample of 157 patients surviving moderate to severe traumatic brain injury between 2000 and 2018. For each patient, we collected T1- and T2-weighted MRI data acutely and at the 6-month follow-up, as well as acute measures of injury severity (Glasgow Coma Scale), follow-up measures of functional impairment (Glasgow Outcome Scale-extended), and, in a subset of patients, neuropsychological measures of attention, executive functions, and episodic memory.ResultsIn the final cohort of 113 subcortical and 92 cortical datasets that survived (blind) quality control, extensive atrophy was observed over the first 6 months after injury across the brain. However, only atrophy within subcortical regions, particularly in the left thalamus, was associated with functional outcome and neuropsychological measures of attention, executive functions, and episodic memory. Furthermore, when brought together in an analytical model, longitudinal brain measurements could distinguish good from bad outcome with 90% accuracy, whereas acute brain and clinical measurements alone could achieve only 20% accuracy.ConclusionDespite great injury heterogeneity, secondary thalamic pathology is a measurable minimum common denominator mechanism directly relating biology to clinical measures of outcome and cognitive functioning, potentially linking the acute event and the longer-term disease of traumatic brain injury
    corecore