2,484 research outputs found
Interacting Electrons on a Square Fermi Surface
Electronic states near a square Fermi surface are mapped onto quantum chains.
Using boson-fermion duality on the chains, the bosonic part of the interaction
is isolated and diagonalized. These interactions destroy Fermi liquid behavior.
Non-boson interactions are also generated by this mapping, and give rise to a
new perturbation theory about the boson problem. A case with strong repulsions
between parallel faces is studied and solved. There is spin-charge separation
and the square Fermi surface remains square under doping. At half-filling,
there is a charge gap and insulating behavior together with gapless spin
excitations. This mapping appears to be a general tool for understanding the
properties of interacting electrons on a square Fermi surface.Comment: 25 pages, Nordita preprint 94/22
Field-theoretical renormalization group for a flat two-dimensional Fermi surface
We implement an explicit two-loop calculation of the coupling functions and
the self-energy of interacting fermions with a two-dimensional flat Fermi
surface in the framework of the field theoretical renormalization group (RG)
approach. Throughout the calculation both the Fermi surface and the Fermi
velocity are assumed to be fixed and unaffected by interactions. We show that
in two dimensions, in a weak coupling regime, there is no significant change in
the RG flow compared to the well-known one-loop results available in the
literature. However, if we extrapolate the flow to a moderate coupling regime
there are interesting new features associated with an anisotropic suppression
of the quasiparticle weight Z along the Fermi surface, and the vanishing of the
renormalized coupling functions for several choices of the external momenta.Comment: 16 pages and 22 figure
Wigner Crystal State for the Edge Electrons in the Quantum Hall Effect at Filling
The electronic excitations at the edges of a Hall bar not much wider than a
few magnetic lengths are studied theoretically at filling . Both
mean-field theory and Luttinger liquid theory techniques are employed for the
case of a null Zeeman energy splitting. The first calculation yields a stable
spin-density wave state along the bar, while the second one predicts dominant
Wigner-crystal correlations along the edges of the bar. We propose an
antiferromagnetic Wigner-crystal groundstate for the edge electrons that
reconciles the two results. A net Zeeman splitting is found to produce canting
of the antiferromagnetic order.Comment: 22 pgs. of PLAIN TeX, 1 fig. in postscript, published versio
An Electron Spin Resonance Selection Rule for Spin-Gapped Systems
The direct electron spin resonance (ESR) absorption between a singlet ground
state and the triplet excited states of spin gap systems is investigated. Such
an absorption, which is forbidden by the conservation of the total spin quantum
number in isotropic Hamiltonians, is allowed by the Dzyaloshinskii-Moriya
interaction. We show a selection rule in the presence of this interaction,
using the exact numerical diagonalization of the finite cluster of the
quasi-one-dimensional bond-alternating spin system. The selection rule is also
modified into a suitable form in order to interpret recent experimental results
on CuGeO and NaVO.Comment: 5 pages, Revtex, with 6 eps figures, to appear in J. Phys. Soc. Jpn.
Vol. 69 No. 11 (2000
Efficiency of different selection strategies against boar taint in pigs
The breeding scheme of a Swiss sire line was modeled to compare different target traits and information sources for selection against boar taint. The impact of selection against boar taint on production traits was assessed for different economic weights of boar taint compounds. Genetic gain and breeding costs were evaluated using ZPlan+, a software based on selection index theory, gene flow method and economic modeling. Scenario I reflected the currently practiced breeding strategy as a reference scenario without selection against boar taint. Scenario II incorporated selection against the chemical compounds of boar taint, androstenone (AND), skatole (SKA) and indole (IND) with economic weights of â2.74, â1.69 and â0.99 Euro per unit of the log transformed trait, respectively. As information sources, biopsy-based performance testing of live boars (BPT) was compared with genomic selection (GS) and a combination of both. Scenario III included selection against the subjectively assessed human nose score (HNS) of boar taint. Information sources were either station testing of full and half sibs of the selection candidate or GS against HNS of boar taint compounds. In scenario I, annual genetic gain of log-transformed AND (SKA; IND) was 0.06 (0.09; 0.02) Euro, which was because of favorable genetic correlations with lean meat percentage and meat surface. In scenario II, genetic gain increased to 0.28 (0.20; 0.09) Euro per year when conducting BPT. Compared with BPT, genetic gain was smaller with GS. A combination of BPT and GS only marginally increased annual genetic gain, whereas variable costs per selection candidate augmented from 230 Euro (BPT) to 330 Euro (GS) or 380 Euro (both). The potential of GS was found to be higher when selecting against HNS, which has a low heritability. Annual genetic gain from GS was higher than from station testing of 4 full sibs and 76 half sibs with one or two measurements. The most effective strategy to reduce HNS was selecting against chemical compounds by conducting BPT. Because of heritabilities higher than 0.45 for AND, SKA and IND and high genetic correlations to HNS, the (correlated) response in units of the trait could be increased by 62% compared with scenario III with GS and even by 79% compared with scenario III, with station testing of siblings with two measurements. Increasing the economic weights of boar taint compounds amplified negative effects on average daily gain, drip loss and intramuscular fat percentag
Studies of a Lacustrine-Volcanic Mars Analog Field Site with Mars-2020-like Instruments
On the upcoming Marsâ2020 rover two remote sensing instruments, MastcamâZ and SuperCam, and two microscopic proximity science instruments, SHERLOC and PIXL, will collect compositional (mineralogy, chemistry, and organics) data essential for paleoenvironmental reconstruction. The synergies between and limitations of these instruments were evaluated via study of a Mars analog field site in the Mojave Desert, using instruments approximating the data that will be returned by Marsâ2020. A ground truth dataset was generated for comparison to validate the results. The site consists of a succession of clayârich mudstones of lacustrine origin, interbedded tuffs, a carbonateâsilica travertine deposit, and gypsiferous mudstone strata. The major geological units were mapped successfully using simulated Marsâ2020 data. Simulated MastcamâZ data identified unit boundaries and Feâbearing weathering products. Simulated SuperCam passive shortwave infrared and green Raman data were essential in identifying major mineralogical composition and changes in lacustrine facies at distance; this was possible even with spectrally downsampled passive IR data. LIBS and simulated PIXL data discriminated and mapped major element chemistry. Simulated PIXL revealed mmâscale zones enriched in zirconium, of interest for age dating. SHERLOCâlike data mapped sulfate and carbonate at subâmm scale; silicates were identified with increased laser pulses/spot or by averaging of hundreds of spectra. Fluorescence scans detected and mapped varied classes of organics in all samples, characterized further with followâon spatially targeted deepâUV Raman spectra. Development of dedicated organics spectral libraries is needed to aid interpretation. Given these observations, the important units in the outcrop would be sampled and cached for sample return
Dynamical density correlation function of 1D Mott insulators in a magnetic field
We consider the one dimensional (1D) extended Hubbard model at half filling
in the presence of a magnetic field. Using field theory techniques we calculate
the dynamical density-density correlation function in the
low-energy limit. When excitons are formed, a singularity appears in
at a particular energy and momentum transfer.Comment: 7 pages, 4 figure
Bosonization for Wigner-Jordan-like Transformation : Backscattering and Umklapp-processes on Fictitious Lattice
We analyze the asymptotic behavior of the exponential form in the fermionic
density operators as the function of ruling parameter Q. In the particular case
Q=\pi this exponential associates with the Wigner-Jordan transformation for XY
spin chain model. We compare the bosonization approach and the evaluation via
the Toeplitz determinant. The use of Szego-Kac theorem suggests that at Q>\pi/3
the divergent series for intrinsic logarithm provides a bosonized solution and
faster decaying one, found as the logarithm's value on another sheet of the
complex plane. The second solution is revealed as umklapp-process on the
fictitious lattice while originates from backscattering terms in bosonized
density. Our finding preserves in a wide range of fermion filling ratios.Comment: 8 pages, REVTEX, 3 eps figures, accepted to Phys.Rev.
- âŠ