87 research outputs found

    EURADOS IC2012N: EURADOS 2012 intercomparison for whole-body neutron dosimetry

    Get PDF
    The European Radiation Dosimetry Group (EURADOS) IC2012n intercomparison for neutron dosemeters intended to measure personal dose equivalent, Hp(10), was performed in 2012. A total of 31 participants (27 individual monitoring services from Europe, 2 from Japan, 1 from Israel and 1 from USA) registered with 34 dosimetry systems. Participation was restricted to passive or active neutron dosemeters routinely used in individual monitoring of radiation workers. The dosimetry systems were based on thermoluminescence, polyallyldiglycol carbonate, optically stimulated luminescence, fission track detection and silicon diodes (electronic devices). The irradiation tests were chosen to provide the participants with useful information on their dosimetry systems, i.e. linearity, reproducibility, responses for different energies and angles and to simulated workplace fields. The paper will report and discuss the first analysis of the results of the EURADOS IC2012n intercompariso

    Direction distributions of neutrons and reference values of the personal dose equivalent in workplace fields

    Get PDF
    Within the EC project EVIDOS, double-differential (energy and direction) fluence spectra were determined by means of novel direction spectrometers. By folding the spectra with fluence-to-dose equivalent conversion coefficients, contributions to H*(10) for 14 directions, and values of the personal dose equivalent Hp(10) and the effective dose E for 6 directions of a person's orientation in the field were determined. The results of the measurements and calculations obtained within the EVIDOS project in workplace fields in nuclear installations in Europe, i.e., at Krümmel (boiling water reactor and transport cask), at Mol (Venus research reactor and fuel facility Belgonucléaire) and at Ringhals (pressurised reactor and transport cask) are presente

    Characterisation of mixed neutron-photon workplace fields at nuclear facilities by spectrometry (energy and direction) within the EVIDOS project

    Get PDF
    Within the EC project EVIDOS, 17 different mixed neutron-photon workplace fields at nuclear facilities (boiling water reactor, pressurised water reactor, research reactor, fuel processing, storage of spent fuel) were characterised using conventional Bonner sphere spectrometry and newly developed direction spectrometers. The results of the analysis, using Bayesian parameter estimation methods and different unfolding codes, some of them especially adapted to simultaneously unfold energy and direction distributions of the neutron fluence, showed that neutron spectra differed strongly at the different places, both in energy and direction distribution. The implication of the results for the determination of reference values for radiation protection quantities (ambient dose equivalent, personal dose equivalent and effective dose) and the related uncertainties are discusse

    Evaluation of individual dosimetry in mixed neutron and photon radiation fields (EVIDOS). Part II: conclusions and recommendations

    Get PDF
    The paper presents the main conclusions and recommendations derived from the EVIDOS project, which is supported by the European Commission within the 5th Framework Programme. EVIDOS aims at evaluating state of the art neutron dosimetry techniques in representative workplaces of the nuclear industry with complex mixed neutron-photon radiation fields. This analysis complements a series of individual papers which present detailed results and it summarises the main findings from a practical point of view. Conclusions and recommendations are given concerning characterisation of radiation fields, methods to derive radiation protection quantities and dosemeter result

    Achievements in workplace neutron dosimetry in the last decade: lessons learned from the EVIDOS project

    Get PDF
    The availability of active neutron personal dosemeters has made real time monitoring of neutron doses possible. This has obvious benefits, but is only of any real assistance if the dose assessments made are of sufficient accuracy and reliability. Preliminary assessments of the performance of active neutron dosemeters can be made in calibration facilities, but these can never replicate the conditions under which the dosemeter is used in the workplace. Consequently, it is necessary to assess their performance in the workplace, which requires the field in the workplace to be fully characterised in terms of the energy and direction dependence of the fluence. This paper presents an overview of developments in workplace neutron dosimetry but concentrates on the outcomes of the EVIDOS project, which has made significant advances in the characterisation of workplace fields and the analysis of dosemeter responses in those field

    Evaluation of individual dosimetry in mixed neutron and photon radiation fields (EVIDOS). Part I: scope and methods of the project

    Get PDF
    Supported by the European Commission, the EVIDOS project started in November 2001 with the broad goal of evaluating state of the art dosimetry techniques in representative workplaces of the nuclear industry. Seven European institutes joined efforts with end users at nuclear power plants, at fuel processing and reprocessing plants, and at transport and storage facilities. A comprehensive programme was devised to evaluate capabilities and limitations of standard and innovative personal dosemeters in relation to the mixed neutron-photon fields of concern to the nuclear industry. This paper describes the criteria behind the selection of dosimetry techniques and workplaces that were analysed, as well as the organisation of the measurement campaigns. Particular emphasis was placed on the evaluation of a variety of electronic personal dosemeters, either commercially available or previously developed by the partners. The estimates provided by these personal dosemeters were compared to reference values of dose equivalent quantities derived from spectrometry and fluence-to-dose equivalent conversion coefficients. Spectrometry was performed both with conventional multisphere and with some original instrumentation providing energy and direction resolution, based on silicon detectors and superheated drop detectors mounted on or in spherical moderators. The results were collected in a large, searchable database and are intended to be used in the harmonisation of dosimetric procedures for mixed radiation fields and for the approval of dosimetry services in Europ

    Application of workplace correction factors to dosemeter results for the assessment of personal doses at nuclear facilities

    Get PDF
    Ratios of Hp(10) and H*(10) were determined with reference instruments in a number of workplace fields within the nuclear industry and used to derive workplace-specific correction factors. When commercial survey meter results together with these factors were applied to the results of the locally used personal dosemeters their results improved and became within 0.7 and 1.7 of the reference values or better depending on the response of the survey meter. A similar result was obtained when a correction was determined with a prototype reference instrument for Hp(10) after adjustment of its response. Commercially available survey instruments both for photon and neutron H*(10) measurements agreed with the reference instruments in most cases to within 0.5-1.5. Those conclusions are derived from results reported within the EC supported EVIDOS contrac

    Neutron area survey instrument measurements in the EVIDOS project

    Get PDF
    Neutron survey instruments have been exposed at all the measurement locations used in the EVIDOS project. These results have an important impact in the interpretation of the results from the project, since operationally the survey instrument will be used for an initial assessment of and routine monitoring of the ambient dose equivalent dose rate. Additionally, since the response of these instruments is in some cases very well characterised, their systematic deviations from the reference quantities provide an important verification of the determination of those quantitie

    Evaluation of individual monitoring in mixed neutron/photon fields: mid-term results from the EVIDOS project

    Get PDF
    EVIDOS is an EC sponsored project that aims at an evaluation and improvement of radiation protection dosimetry in mixed neutron/photon fields. This is performed through spectrometric and dosimetric investigations during different measurement campaigns in representative workplaces of the nuclear industry. The performance of routine and, in particular, novel personal dosemeters and survey instruments is tested in selected workplace fields. Reference values for the dose equivalent quantities, H*(10) and Hp(10) and the effective dose E, are determined using different spectrometers that provide the energy distribution of the neutron fluence and using newly developed devices that determine the energy and directional distribution of the neutron fluence. The EVIDOS project has passed the mid-term, and three measurement campaigns have been performed. This paper will give an overview and some new results from the third campaign that was held in Mol (Belgium), around the research reactor VENUS and in the MOX producing plant of Belgonucléair

    Electronic neutron personal dosemeters: their performance in mixed radiation fields in nuclear power plants

    Get PDF
    This work describes spectral distributions of neutrons obtained as function of energy and direction at four workplace fields at the Krümmel reactor in Germany. Values of personal dose equivalent Hp(10) and effective dose E are determined for different directions of a person's orientation in these fields and readings of personal neutron dosemeters—especially electronic dosemeters—are discussed with respect to Hp(10) and
    • …
    corecore