2,470 research outputs found

    You can go your own way: effectiveness of participant-driven versus experimenter-driven processing strategies in memory training and transfer

    Get PDF
    Cognitive training programs that instruct specific strategies frequently show limited transfer. Open-ended approaches can achieve greater transfer, but may fail to benefit many older adults due to age deficits in self-initiated processing. We examined whether a compromise that encourages effort at encoding without an experimenter-prescribed strategy might yield better results. Older adults completed memory training under conditions that either (1) mandated a specific strategy to increase deep, associative encoding, (2) attempted to suppress such encoding by mandating rote rehearsal, or (3) encouraged time and effort toward encoding but allowed for strategy choice. The experimenter-enforced associative encoding strategy succeeded in creating integrated representations of studied items, but training-task progress was related to pre-existing ability. Independent of condition assignment, self-reported deep encoding was associated with positive training and transfer effects, suggesting that the most beneficial outcomes occur when environmental support guiding effort is provided but participants generate their own strategies

    Carbohydrate intake and cardiometabolic risk factors in high BMI African American children.

    Get PDF
    The aim of this study was to evaluate the relationship between intakes of subgroups of energy-providing carbohydrate, and markers of cardiometabolic risk factors in high BMI African American (AA) children.A cross sectional analysis was performed on data from a sample of 9-11 year old children (n = 95) with BMI greater than the 85th percentile. Fasting hematological and biochemical values for selected markers of cardiometabolic risk factors were related to intakes of carbohydrates and sugars.After adjusting for gender, pubertal stage and waist circumference, multivariate regression analysis showed that higher intakes of carbohydrate (with fat and protein held constant) were associated with higher plasma concentrations of triglycerides (TG), VLDL-C, IDL-C, and worse insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR). After dividing carbohydrate into non-sugar versus sugar fractions, sugars were significantly related to higher TG, VLDL-C, IDL-C, lower adipocyte fatty acid insulin sensitivity (ISI-FFA), and was closely associated with increased HOMA-IR. Similar trends were observed for sugars classified as added sugars, and for sugars included in beverages. Further dividing sugar according to the food group from which it was consumed showed that consuming more sugar from the candy/soda food group was highly significantly associated with increased TG, VLDL-C, IDL-C and closely associated with increased HOMA-IR. Sugars consumed in all fruit-containing foods were significantly associated with lower ISI-FFA. Sugars consumed as fruit beverages was significantly associated with VLDL-C, IDL-C and ISI-FFA whereas sugars consumed as fresh, dried and preserved fruits did not show significant associations with these markers.Sugars consumed from in all dairy foods were significantly associated with higher TG, VLDL-C and IDL-C, and with significantly lower HDL-C and ISI-FFA. These effects were associated with sugars consumed in sweetened dairy products, but not with sugars consumed in unsweetened dairy products. This analysis suggests that increases in carbohydrate energy, especially in the form of sugar, may be detrimental to cardiometabolic health in high BMI children

    Using colocation to support human memory

    Get PDF
    The progress of health care in the western world has been marked by an increase in life expectancy. Advances in life expectancy have meant that more people are living with acute health problems, many of which are related to impairment of memory. This paper describes a pair of scenarios that use RFID to assist people who may suffer frommemory defects to extend their capability for independent living. We present our implementation of an RFID glove, describe its operation, and show how it enables the application scenarios

    (k,q)-Compressed Sensing for dMRI with Joint Spatial-Angular Sparsity Prior

    Full text link
    Advanced diffusion magnetic resonance imaging (dMRI) techniques, like diffusion spectrum imaging (DSI) and high angular resolution diffusion imaging (HARDI), remain underutilized compared to diffusion tensor imaging because the scan times needed to produce accurate estimations of fiber orientation are significantly longer. To accelerate DSI and HARDI, recent methods from compressed sensing (CS) exploit a sparse underlying representation of the data in the spatial and angular domains to undersample in the respective k- and q-spaces. State-of-the-art frameworks, however, impose sparsity in the spatial and angular domains separately and involve the sum of the corresponding sparse regularizers. In contrast, we propose a unified (k,q)-CS formulation which imposes sparsity jointly in the spatial-angular domain to further increase sparsity of dMRI signals and reduce the required subsampling rate. To efficiently solve this large-scale global reconstruction problem, we introduce a novel adaptation of the FISTA algorithm that exploits dictionary separability. We show on phantom and real HARDI data that our approach achieves significantly more accurate signal reconstructions than the state of the art while sampling only 2-4% of the (k,q)-space, allowing for the potential of new levels of dMRI acceleration.Comment: To be published in the 2017 Computational Diffusion MRI Workshop of MICCA

    Dissecting molecular phenotypes through FACS-based pooled CRISPR screens

    Get PDF
    Pooled CRISPR screens are emerging as a powerful tool to dissect regulatory networks, by assessing how a protein responds to genetic perturbations in a highly multiplexed manner. A large number of genes are perturbed in a cell population through genomic integration of one single-guide RNA (sgRNA) per cell. A subset of cells with the phenotype of interest can then be enriched through fluorescence-activated cell sorting (FACS). SgRNAs with altered abundance after phenotypic enrichment allow identification of genes that either promote or attenuate the investigated phenotype. Here we provide detailed guidelines on how to design and execute a pooled CRISPR screen to investigate molecular phenotypes. We describe how to generate a custom sgRNA library and how to perform a FACS-based screen using readouts such as intracellular antibody staining or Flow-FISH to assess phosphorylation levels or RNA abundance. Through the variety of available perturbation systems and readout options many different molecular and cellular phenotypes can now be tackled with pooled CRISPR screens

    Identifying Metabolic Syndrome in African American Children Using Fasting HOMA-IR in Place of Glucose

    Get PDF
    IntroductionMetabolic syndrome (MetS) is increasing among young people. We compared the use of homeostasis model assessment of insulin resistance (HOMA-IR) with the use of fasting blood glucose to identify MetS in African American children.MethodsWe performed a cross-sectional analysis of data from a sample of 105 children (45 boys, 60 girls) aged 9 to 13 years with body mass indexes at or above the 85th percentile for age and sex. Waist circumference, blood pressure, and fasting levels of blood glucose, insulin, triglycerides, and high-density lipoprotein cholesterol were measured.ResultsWe found that HOMA-IR is a stronger indicator of MetS in children than blood glucose. Using HOMA-IR as 1 of the 5 components, we found a 38% prevalence of MetS in this sample of African American children and the proportion of false negatives decreased from 94% with blood glucose alone to 13% with HOMA-IR. The prevalence of MetS was higher in obese than overweight children and higher among girls than boys.ConclusionUsing HOMA-IR was preferred to fasting blood glucose because insulin resistance was more significantly interrelated with the other 4 MetS components

    Coarse-graining protein energetics in sequence variables

    Full text link
    We show that cluster expansions (CE), previously used to model solid-state materials with binary or ternary configurational disorder, can be extended to the protein design problem. We present a generalized CE framework, in which properties such as energy can be unambiguously expanded in the amino-acid sequence space. The CE coarse grains over nonsequence degrees of freedom (e.g., side-chain conformations) and thereby simplifies the problem of designing proteins, or predicting the compatibility of a sequence with a given structure, by many orders of magnitude. The CE is physically transparent, and can be evaluated through linear regression on the energies of training sequences. We show, as example, that good prediction accuracy is obtained with up to pairwise interactions for a coiled-coil backbone, and that triplet interactions are important in the energetics of a more globular zinc-finger backbone.Comment: 10 pages, 3 figure
    corecore