1,846 research outputs found

    Can one hear the shape of the Universe?

    Get PDF
    It is shown that the recent observations of NASA's explorer mission "Wilkinson Microwave Anisotropy Probe" (WMAP) hint that our Universe may possess a non-trivial topology. As an example we discuss the Picard space which is stretched out into an infinitely long horn but with finite volume.Comment: 4 page

    CMB Anisotropy of Spherical Spaces

    Full text link
    The first-year WMAP data taken at their face value hint that the Universe might be slightly positively curved and therefore necessarily finite, since all spherical (Clifford-Klein) space forms M^3 = S^3/Gamma, given by the quotient of S^3 by a group Gamma of covering transformations, possess this property. We examine the anisotropy of the cosmic microwave background (CMB) for all typical groups Gamma corresponding to homogeneous universes. The CMB angular power spectrum and the temperature correlation function are computed for the homogeneous spaces as a function of the total energy density parameter Omega_tot in the large range [1.01, 1.20] and are compared with the WMAP data. We find that out of the infinitely many homogeneous spaces only the three corresponding to the binary dihedral group T*, the binary octahedral group O*, and the binary icosahedral group I* are in agreement with the WMAP observations. Furthermore, if Omega_tot is restricted to the interval [1.00, 1.04], the space described by T* is excluded since it requires a value of Omega_tot which is probably too large being in the range [1.06, 1.07]. We thus conclude that there remain only the two homogeneous spherical spaces S^3/O* and S^3/I* with Omega_tot of about 1.038 and 1.018, respectively, as possible topologies for our Universe.Comment: A version with high resolution sky maps can be obtained at http://www.physik.uni-ulm.de/theo/qc

    CMB Anisotropy of the Poincare Dodecahedron

    Full text link
    We analyse the anisotropy of the cosmic microwave background (CMB) for the Poincare dodecahedron which is an example for a multi-connected spherical universe. We compare the temperature correlation function and the angular power spectrum for the Poincare dodecahedral universe with the first-year WMAP data and find that this multi-connected universe can explain the surprisingly low CMB anisotropy on large scales found by WMAP provided that the total energy density parameter Omega_tot is in the range 1.016...1.020. The ensemble average over the primordial perturbations is assumed to be the scale-invariant Harrison-Zel'dovich spectrum. The circles-in-the-sky signature is studied and it is found that the signal of the six pairs of matched circles could be missed by current analyses of CMB sky maps

    Aggregated Mycobacterium tuberculosis Enhances the Inflammatory Response

    Get PDF
    Mycobacterium tuberculosis (Mtb) bacilli readily aggregate. We previously reported that Mtb aggregates lead to phagocyte death and subsequent efficient replication in the dead infected cells. Here, we examined the transcriptional response of human monocyte derived macrophages to phagocytosis of aggregated Mtb relative to phagocytosis of non-aggregated single or multiple bacilli. Infection with aggregated Mtb led to an early upregulation of pro-inflammatory associated genes and enhanced TNFα signaling via the NFκB pathway. These pathways were significantly more upregulated relative to infection with single or multiple non-aggregated bacilli per cell. Phagocytosis of aggregates led to a decreased phagosome acidification on a per bacillus basis and increased phagocyte cell death, which was not observed when Mtb aggregates were heat killed prior to phagocytosis. Mtb aggregates, observed in a granuloma from a patient, were found surrounding a lesion cavity. These observations suggest that TB aggregation may be a mechanism for pathogenesis. They raise the possibility that aggregated Mtb, if spread from individual to individual, could facilitate increased inflammation, Mtb growth, and macrophage cell death, potentially leading to active disease, cell necrosis, and additional cycles of transmission

    Sex hormones play a role in vulnerability to sleep loss on emotion processing tasks

    Get PDF
    The central aim of this study was to investigate hormones as a predictor of individual vulnerability or resiliency on emotion processing tasks following one night of sleep restriction. The restriction group was instructed to sleep 3 a.m.–7 a.m. (13 men, 13 women in follicular phase, 10 women in luteal phase of menstrual cycle), and a control group slept 11 p.m.–7 a.m. (12 men, 12 follicular women, 12 luteal women). Sleep from home was verified with actigraphy. Saliva samples were collected on the evening prior to restriction, and in the morning and afternoon following restriction, to measure testosterone, estradiol, and progesterone. In the laboratory, event-related potentials (ERPs) were recorded during presentation of images and faces to index neural processing of emotional stimuli. Compared to controls, sleep-restricted participants had a larger amplitude Late Positive Potential (LPP) ERP to positive vs neutral images, reflecting greater motivated attention towards positive stimuli. Sleep-restricted participants were also less accurate categorizing sad faces and exhibited a larger N170 to sad faces, reflecting greater neural reactivity. Sleep-restricted luteal women were less accurate categorizing all images compared to control luteal women, and progesterone was related to several outcomes. Morning testos- terone in men was lower in the sleep-restricted group compared to controls; lower testosterone was associated with lower accuracy to positive images, a greater difference between positive vs neutral LPP amplitude, and lower accuracy to sad and fearful faces. In summary, women higher in progesterone and men lower in testos- terone were more vulnerable to the effects of sleep restriction on emotion processing tasks. This study highlights a role for sex and sex hormones in understanding individual differences in vulnerability to sleep loss.Brock University Library Open Access Publishing Fun

    Cosmic microwave anisotropies in an inhomogeneous compact flat universe

    Full text link
    The anisotropies of the cosmic microwave background (CMB) are computed for the half-turn space E_2 which represents a compact flat model of the Universe, i.e. one with finite volume. This model is inhomogeneous in the sense that the statistical properties of the CMB depend on the position of the observer within the fundamental cell. It is shown that the half-turn space describes the observed CMB anisotropies on large scales better than the concordance model with infinite volume. For most observer positions it matches the temperature correlation function even slightly better than the well studied 3-torus topology

    The nonlinear time-dependent response of isotactic polypropylene

    Full text link
    Tensile creep tests, tensile relaxation tests and a tensile test with a constant rate of strain are performed on injection-molded isotactic polypropylene at room temperature in the vicinity of the yield point. A constitutive model is derived for the time-dependent behavior of semi-crystalline polymers. A polymer is treated as an equivalent network of chains bridged by permanent junctions. The network is modelled as an ensemble of passive meso-regions (with affine nodes) and active meso-domains (where junctions slip with respect to their positions in the bulk medium with various rates). The distribution of activation energies for sliding in active meso-regions is described by a random energy model. Adjustable parameters in the stress--strain relations are found by fitting experimental data. It is demonstrated that the concentration of active meso-domains monotonically grows with strain, whereas the average potential energy for sliding of junctions and the standard deviation of activation energies suffer substantial drops at the yield point. With reference to the concept of dual population of crystalline lamellae, these changes in material parameters are attributed to transition from breakage of subsidiary (thin) lamellae in the sub-yield region to fragmentation of primary (thick) lamellae in the post-yield region of deformation.Comment: 29 pages, 12 figure

    Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-beta and Runx2 in bone is required for hearing

    Get PDF
    Publisher version: http://www.nature.com/embor/journal/v11/n10/full/embor2010135.htmlDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEPhysical cues, such as extracellular matrix stiffness, direct cell differentiation and support tissue-specific function. Perturbation of these cues underlies diverse pathologies, including osteoarthritis, cardiovascular disease and cancer. However, the molecular mechanisms that establish tissue-specific material properties and link them to healthy tissue function are unknown. We show that Runx2, a key lineage-specific transcription factor, regulates the material properties of bone matrix through the same transforming growth factor-beta (TGFbeta)-responsive pathway that controls osteoblast differentiation. Deregulated TGFbeta or Runx2 function compromises the distinctly hard cochlear bone matrix and causes hearing loss, as seen in human cleidocranial dysplasia. In Runx2(+/-) mice, inhibition of TGFbeta signalling rescues both the material properties of the defective matrix, and hearing. This study elucidates the unknown cause of hearing loss in cleidocranial dysplasia, and demonstrates that a molecular pathway controlling cell differentiation also defines material properties of extracellular matrix. Furthermore, our results suggest that the careful regulation of these properties is essential for healthy tissue functio

    Light Curves and Period Changes of Type II Cepheids in the Globular Clusters M3 and M5

    Full text link
    Light curves in the B, V, and I_c passbands have been obtained for the type II Cepheids V154 in M3 and V42 and V84 in M5. Alternating cycle behavior, similar to that seen among RV Tauri variables, is confirmed for V84. Old and new observations, spanning more than a century, show that V154 has increased in period while V42 has decreased in period. V84, on the other hand, has shown large, erratic changes in period that do not appear to reflect the long term evolution of V84 through the HR diagram.Comment: 28 pages, 12 figure
    • …
    corecore