8,389 research outputs found
Light-to-light readout system of the CMS electromagnetic calorimeter
For the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN, an 80,000-crystal electromagnetic calorimeter will measure electron and photon energies with high precision over a dynamic range of roughly 16 bits. The readout electronics will be located directly behind the crystals, and must survive a total dose of up to 2×104 Gy along with 5×1013 n/cm 2. A readout chain consisting of a custom wide-range acquisition circuit, commercial ADC and custom optical link for each crystal is presently under construction. An overview of the design is presented, with emphasis on the large-scale fiber communication syste
Proof-of-principle of a new geometry for sampling calorimetry using inorganic scintillator plates
A novel geometry for a sampling calorimeter employing inorganic scintillators
as an active medium is presented. To overcome the mechanical challenges of
construction, an innovative light collection geometry has been pioneered, that
minimises the complexity of construction. First test results are presented,
demonstrating a successful signal extraction. The geometry consists of a
sampling calorimeter with passive absorber layers interleaved with layers of an
active medium made of inorganic scintillating crystals. Wavelength-shifting
(WLS) fibres run along the four long, chamfered edges of the stack,
transporting the light to photodetectors at the rear. To maximise the amount of
scintillation light reaching the WLS fibres, the scintillator chamfers are
depolished. It is shown herein that this concept is working for cerium fluoride
(CeF) as a scintillator. Coupled to it, several different types of
materials have been tested as WLS medium. In particular, materials that might
be sufficiently resistant to the High-Luminosity Large Hadron Collider
radiation environment, such as cerium-doped Lutetium-Yttrium Orthosilicate
(LYSO) and cerium-doped quartz, are compared to conventional plastic WLS
fibres. Finally, an outlook is presented on the possible optimisation of the
different components, and the construction and commissioning of a full
calorimeter cell prototype is presented.Comment: Submitted to Proceedings CALOR 2014, the 16th International
Conference on Calorimetry in High-Energy Physics, Giessen (Germany) 6 - 11
April 2014. To be published in Journal of Physics: Conference Series (10
pages, 15 figures
FACT - Long-term Monitoring of Bright TeV-Blazars
Since October 2011, the First G-APD Cherenkov Telescope (FACT) is operated
successfully on the Canary Island of La Palma. Apart from the proof of
principle for the use of G-APDs in Cherenkov telescopes, the major goal of the
project is the dedicated long-term monitoring of a small sample of bright TeV
blazars. The unique properties of G-APDs permit stable observations also during
strong moon light. Thus a superior sampling density is provided on time scales
at which the blazar variability amplitudes are expected to be largest, as
exemplified by the spectacular variations of Mrk 501 observed in June 2012.
While still in commissioning, FACT monitored bright blazars like Mrk 421 and
Mrk 501 during the past 1.5 years so far. Preliminary results including the Mrk
501 flare from June 2012 will be presented.Comment: 4 pages, 4 figures, presented at the 33rd ICRC (2013
Data compression for the First G-APD Cherenkov Telescope
The First Geiger-mode Avalanche photodiode (G-APD) Cherenkov Telescope (FACT)
has been operating on the Canary island of La Palma since October 2011.
Operations were automated so that the system can be operated remotely. Manual
interaction is required only when the observation schedule is modified due to
weather conditions or in case of unexpected events such as a mechanical
failure. Automatic operations enabled high data taking efficiency, which
resulted in up to two terabytes of FITS files being recorded nightly and
transferred from La Palma to the FACT archive at ISDC in Switzerland. Since
long term storage of hundreds of terabytes of observations data is costly, data
compression is mandatory. This paper discusses the design choices that were
made to increase the compression ratio and speed of writing of the data with
respect to existing compression algorithms.
Following a more detailed motivation, the FACT compression algorithm along
with the associated I/O layer is discussed. Eventually, the performances of the
algorithm is compared to other approaches.Comment: 17 pages, accepted to Astronomy and Computing special issue on
astronomical file format
FACT -- Operation of the First G-APD Cherenkov Telescope
Since more than two years, the First G-APD Cherenkov Telescope (FACT) is
operating successfully at the Canary Island of La Palma. Apart from its purpose
to serve as a monitoring facility for the brightest TeV blazars, it was built
as a major step to establish solid state photon counters as detectors in
Cherenkov astronomy.
The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode
avalanche photo diodes (G-APD aka. MPPC or SiPM) for photon detection. Since
properties as the gain of G-APDs depend on temperature and the applied voltage,
a real-time feedback system has been developed and implemented. To correct for
the change introduced by temperature, several sensors have been placed close to
the photon detectors. Their read out is used to calculate a corresponding
voltage offset. In addition to temperature changes, changing current introduces
a voltage drop in the supporting resistor network. To correct changes in the
voltage drop introduced by varying photon flux from the night-sky background,
the current is measured and the voltage drop calculated. To check the stability
of the G-APD properties, dark count spectra with high statistics have been
taken under different environmental conditions and been evaluated.
The maximum data rate delivered by the camera is about 240 MB/s. The recorded
data, which can exceed 1 TB in a moonless night, is compressed in real-time
with a proprietary loss-less algorithm. The performance is better than gzip by
almost a factor of two in compression ratio and speed. In total, two to three
CPU cores are needed for data taking. In parallel, a quick-look analysis of the
recently recorded data is executed on a second machine. Its result is publicly
available within a few minutes after the data were taken.
[...]Comment: 19th IEEE Real-Time Conference, Nara, Japan (2014
Calibration and performance of the photon sensor response of FACT -- The First G-APD Cherenkov telescope
The First G-APD Cherenkov Telescope (FACT) is the first in-operation test of
the performance of silicon photo detectors in Cherenkov Astronomy. For more
than two years it is operated on La Palma, Canary Islands (Spain), for the
purpose of long-term monitoring of astrophysical sources. For this, the
performance of the photo detectors is crucial and therefore has been studied in
great detail. Special care has been taken for their temperature and voltage
dependence implementing a correction method to keep their properties stable.
Several measurements have been carried out to monitor the performance. The
measurements and their results are shown, demonstrating the stability of the
gain below the percent level. The resulting stability of the whole system is
discussed, nicely demonstrating that silicon photo detectors are perfectly
suited for the usage in Cherenkov telescopes, especially for long-term
monitoring purpose
Performance of a Tungsten-Cerium Fluoride Sampling Calorimeter in High-Energy Electron Beam Tests
A prototype for a sampling calorimeter made out of cerium fluoride crystals
interleaved with tungsten plates, and read out by wavelength-shifting fibres,
has been exposed to beams of electrons with energies between 20 and 150 GeV,
produced by the CERN Super Proton Synchrotron accelerator complex. The
performance of the prototype is presented and compared to that of a Geant4
simulation of the apparatus. Particular emphasis is given to the response
uniformity across the channel front face, and to the prototype's energy
resolution.Comment: 6 pages, 6 figures, Submitted to NIM
FACT - Threshold prediction for higher duty cycle and improved scheduling
The First G-APD Cherenkov telescope (FACT) is the first telescope using
silicon photon detectors (G-APD aka. SiPM). The use of Silicon devices promise
a higher photon detection efficiency, more robustness and higher precision than
photo-multiplier tubes. Being operated during different light-conditions, the
threshold settings of a Cherenkov telescope have to be adapted to feature the
lowest possible threshold but also an efficient suppression of triggers from
night-sky background photons. Usually this threshold is set either by
experience or a mini-ratescan. Since the measured current through the sensors
is directly correlated with the noise level, the current can be used to set the
best threshold at any time. Due to the correlation between the physical
threshold and the final energy threshold, the current can also be used as a
measure for the energy threshold of any observation. This presentation
introduces a method which uses the properties of the moon and the source
position to predict the currents and the corresponding energy threshold for
every upcoming observation allowing to adapt the observation schedule
accordingly
A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes
Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light
detection in atmospheric Cherenkov telescopes. In this paper, the design and
commissioning of a 36-pixel G-APD prototype camera is presented. The data
acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond
time resolution has been achieved. Cosmic-ray induced air showers have been
recorded using an imaging mirror setup, in a self-triggered mode. This is the
first time that such measurements have been carried out with a complete G-APD
camera.Comment: 9 pages with 11 figure
FACT - How stable are the silicon photon detectors?
The First G-APD Cherenkov telescope (FACT) is the first telescope using
silicon photon detectors (G-APD aka. SiPM). The use of Silicon devices promise
a higher photon detection efficiency, more robustness and higher precision than
photo-multiplier tubes. Since the properties of G-APDs depend on auxiliary
parameters like temperature, a feedback system adapting the applied voltage
accordingly is mandatory.
In this presentation, the feedback system, developed and in operation for
FACT, is presented. Using the extraction of a single photon-equivalent (pe)
spectrum as a reference, it can be proven that the sensors can be operated with
very high precision. The extraction of the single-pe, its spectrum up to
10\,pe, its properties and their precision, as well as their long-term behavior
during operation are discussed. As a by product a single pulse template is
obtained. It is shown that with the presented method, an additional external
calibration device can be omitted. The presented method is essential for the
application of G-APDs in future projects in Cherenkov astronomy and is supposed
to result in a more stable and precise operation than possible with
photo-multiplier tubes
- …
