758 research outputs found

    NUT-Charged Black Holes in Gauss-Bonnet Gravity

    Full text link
    We investigate the existence of Taub-NUT/bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in dd dimensions. We find that for all non-extremal NUT solutions of Einstein gravity having no curvature singularity at r=Nr=N, there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter α\alpha goes to zero. Furthermore there are no NUT solutions in Gauss-Bonnet gravity that yield non-extremal NUT solutions to Einstein gravity having a curvature singularity at r=Nr=N in the limit % \alpha \to 0. Indeed, we have non-extreme NUT solutions in 2+2k2+2k dimensions with non-trivial fibration only when the 2k2k-dimensional base space is chosen to be CP2k\mathbb{CP}^{2k}. We also find that the Gauss-Bonnet gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a 2-dimensional factor space of positive curvature. Indeed, when the base space has at most one positively curved two dimensional space as one of its factor spaces, then Gauss-Bonnet gravity admits extreme NUT solutions, even though there a curvature singularity exists at r=Nr=N. We also find that one can have bolt solutions in Gauss-Bonnet gravity with any base space with factor spaces of zero or positive constant curvature. The only case for which one does not have bolt solutions is in the absence of a cosmological term with zero curvature base space.Comment: 20 pages, referrence added, a few typos correcte

    Taub-NUT/Bolt Black Holes in Gauss-Bonnet-Maxwell Gravity

    Full text link
    We present a class of higher dimensional solutions to Gauss-Bonnet-Maxwell equations in 2k+22k+2 dimensions with a U(1) fibration over a 2k2k-dimensional base space B\mathcal{B}. These solutions depend on two extra parameters, other than the mass and the NUT charge, which are the electric charge qq and the electric potential at infinity VV. We find that the form of metric is sensitive to geometry of the base space, while the form of electromagnetic field is independent of B\mathcal{B}. We investigate the existence of Taub-NUT/bolt solutions and find that in addition to the two conditions of uncharged NUT solutions, there exist two other conditions. These two extra conditions come from the regularity of vector potential at r=Nr=N and the fact that the horizon at r=Nr=N should be the outer horizon of the black hole. We find that for all non-extremal NUT solutions of Einstein gravity having no curvature singularity at r=Nr=N, there exist NUT solutions in Gauss-Bonnet-Maxwell gravity. Indeed, we have non-extreme NUT solutions in 2+2k2+2k dimensions only when the 2k2k-dimensional base space is chosen to be CP2k\mathbb{CP}^{2k}. We also find that the Gauss-Bonnet-Maxwell gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a 2-dimensional factor space of positive curvature, even though there a curvature singularity exists at r=Nr=N. We also find that one can have bolt solutions in Gauss-Bonnet-Maxwell gravity with any base space. The only case for which one does not have black hole solutions is in the absence of a cosmological term with zero curvature base space.Comment: 23 pages, 3 figures, typos fixed, a few references adde

    Accelerated Expansion of the Universe in Gauss-Bonnet Gravity

    Full text link
    We show that in Gauss-Bonnet gravity with negative Gauss-Bonnet coefficient and without a cosmological constant, one can explain the acceleration of the expanding Universe. We first introduce a solution of the Gauss-Bonnet gravity with negative Gauss-Bonnet coefficient and no cosmological constant term in an empty (n+1)(n+1)-dimensional bulk. This solution can generate a de Sitter spacetime with curvature n(n+1)/{(n2)(n3)α}n(n+1)/\{(n-2)(n-3)|\alpha|\}. We show that an (n1)(n-1)-dimensional brane embedded in this bulk can have an expanding feature with acceleration. We also considered a 4-dimensional brane world in a 5-dimensional empty space with zero cosmological constant and obtain the modified Friedmann equations. The solution of these modified equations in matter-dominated era presents an expanding Universe with negative deceleration and positive jerk which is consistent with the recent cosmological data. We also find that for this solution, the "n"th"n"th derivative of the scale factor with respect to time can be expressed only in terms of Hubble and deceleration parameters.Comment: 12 pages, no figure, references added, typos corrected, Section 4 ammended, an appndix added, version to be appeared in Phys. Rev.

    Brane-f(R)f(R) gravity and dark matter

    Full text link
    The collision-free Boltzmann equation is used in the context of brane-f(R)f(R) gravity to derive the virial theorem. It is shown that the virial mass is proportional to certain geometrical terms appearing in the Einstein field equations and contributes to gravitational energy and that such a geometric mass can be attributed to the virial mass discrepancy in a cluster of galaxies. In addition, the galaxy rotation curves are studied by utilizing the concept of conformal symmetry and notion of conformal Killing symmetry. The field equations may then be obtained in an exact parametric form in terms of the parameter representing the conformal factor. This provides the possibility of studying the behavior of the angular velocity of a test particle moving in a stable circular orbit. The tangential velocity can be derived as a function of the conformal factor and integration constants, resulting in a constant value at large radial distances. Relevant phenomenon such as the deflection of light passing through a region where the rotation curves are flat and the radar echo delay are also studied.Comment: 12 pages, 2 figures, to appear in PR

    Governance in Service Delivery in the Middle East and North Africa. World Development Report Background Paper

    Get PDF
    This paper examines the clientelistic equilibrium that remains prevalent in much of the Middle East and North Africa (MENA) region during the post-independence period, undermining service delivery and creating inequality in access. Political institutions and social practices that shape incentives for policymakers, service providers, and citizens create what can be called a potentially tenuous, “clientelistic equilibrium.” Service delivery is influenced by political institutions that allow for the capture of public jobs and service networks, and by social institutions that call upon individuals to respond more readily to members of their social networks than to others. The result is poor quality service delivery (e.g., absenteeism, insufficient effort), difficulties in access (e.g., need for bribes, connections), and inequalities in the provision of services

    Perturbing gauge/gravity duals by a Romans mass

    Full text link
    We show how to produce algorithmically gravity solutions in massive IIA (as infinitesimal first order perturbations in the Romans mass parameter) dual to assigned conformal field theories. We illustrate the procedure on a family of Chern--Simons--matter conformal field theories that we recently obtained from the N=6 theory by waiving the condition that the levels sum up to zero.Comment: 30 page

    Time Scales for transitions between free energy minima of a hard sphere system

    Get PDF
    Time scales associated with activated transitions between glassy metastable states of a free energy functional appropriate for a dense hard sphere system are calculated by using a new Monte Carlo method for the local density variables. We calculate the time the system,initially placed in a shallow glassy minimum of the free energy, spends in the neighborhood of this minimum before making a transition to the basin of attarction of another free energy minimum. This time scale is found to increase with the average density. We find a crossover density near which this time scale increases very sharply and becomes longer than the longest times accessible in our simulation. This scale shows no evidence of dependence on sample size.Comment: 25 pages, Revtex, 6 postscript figures. Will appear in Phys Rev E, March 1996 or s
    corecore