140 research outputs found
Recommended from our members
An Integrative Genomic Approach to Uncover Molecular Mechanisms of Prokaryotic Traits
With mounting availability of genomic and phenotypic databases, data integration and mining become increasingly challenging. While efforts have been put forward to analyze prokaryotic phenotypes, current computational technologies either lack high throughput capacity for genomic scale analysis, or are limited in their capability to integrate and mine data across different scales of biology. Consequently, simultaneous analysis of associations among genomes, phenotypes, and gene functions is prohibited. Here, we developed a high throughput computational approach, and demonstrated for the first time the feasibility of integrating large quantities of prokaryotic phenotypes along with genomic datasets for mining across multiple scales of biology (protein domains, pathways, molecular functions, and cellular processes). Applying this method over 59 fully sequenced prokaryotic species, we identified genetic basis and molecular mechanisms underlying the phenotypes in bacteria. We identified 3,711 significant correlations between 1,499 distinct Pfam and 63 phenotypes, with 2,650 correlations and 1,061 anti-correlations. Manual evaluation of a random sample of these significant correlations showed a minimal precision of 30% (95% confidence interval: 20%–42%; n = 50). We stratified the most significant 478 predictions and subjected 100 to manual evaluation, of which 60 were corroborated in the literature. We furthermore unveiled 10 significant correlations between phenotypes and KEGG pathways, eight of which were corroborated in the evaluation, and 309 significant correlations between phenotypes and 166 GO concepts evaluated using a random sample (minimal precision = 72%; 95% confidence interval: 60%–80%; n = 50). Additionally, we conducted a novel large-scale phenomic visualization analysis to provide insight into the modular nature of common molecular mechanisms spanning multiple biological scales and reused by related phenotypes (metaphenotypes). We propose that this method elucidates which classes of molecular mechanisms are associated with phenotypes or metaphenotypes and holds promise in facilitating a computable systems biology approach to genomic and biomedical research.</p
Integration of curated databases to identify genotype-phenotype associations
BACKGROUND: The ability to rapidly characterize an unknown microorganism is critical in both responding to infectious disease and biodefense. To do this, we need some way of anticipating an organism's phenotype based on the molecules encoded by its genome. However, the link between molecular composition (i.e. genotype) and phenotype for microbes is not obvious. While there have been several studies that address this challenge, none have yet proposed a large-scale method integrating curated biological information. Here we utilize a systematic approach to discover genotype-phenotype associations that combines phenotypic information from a biomedical informatics database, GIDEON, with the molecular information contained in National Center for Biotechnology Information's Clusters of Orthologous Groups database (NCBI COGs). RESULTS: Integrating the information in the two databases, we are able to correlate the presence or absence of a given protein in a microbe with its phenotype as measured by certain morphological characteristics or survival in a particular growth media. With a 0.8 correlation score threshold, 66% of the associations found were confirmed by the literature and at a 0.9 correlation threshold, 86% were positively verified. CONCLUSION: Our results suggest possible phenotypic manifestations for proteins biochemically associated with sugar metabolism and electron transport. Moreover, we believe our approach can be extended to linking pathogenic phenotypes with functionally related proteins
Recommended from our members
Network Modeling Identifies Molecular Functions Targeted by miR-204 to Suppress Head and Neck Tumor Metastasis
Due to the large number of putative microRNA gene targets predicted by sequence-alignment databases and the relative low accuracy of such predictions which are conducted independently of biological context by design, systematic experimental identification and validation of every functional microRNA target is currently challenging. Consequently, biological studies have yet to identify, on a genome scale, key regulatory networks perturbed by altered microRNA functions in the context of cancer. In this report, we demonstrate for the first time how phenotypic knowledge of inheritable cancer traits and of risk factor loci can be utilized jointly with gene expression analysis to efficiently prioritize deregulated microRNAs for biological characterization. Using this approach we characterize miR-204 as a tumor suppressor microRNA and uncover previously unknown connections between microRNA regulation, network topology, and expression dynamics. Specifically, we validate 18 gene targets of miR-204 that show elevated mRNA expression and are enriched in biological processes associated with tumor progression in squamous cell carcinoma of the head and neck (HNSCC). We further demonstrate the enrichment of bottleneckness, a key molecular network topology, among miR-204 gene targets. Restoration of miR-204 function in HNSCC cell lines inhibits the expression of its functionally related gene targets, leads to the reduced adhesion, migration and invasion in vitro and attenuates experimental lung metastasis in vivo. As importantly, our investigation also provides experimental evidence linking the function of microRNAs that are located in the cancer-associated genomic regions (CAGRs) to the observed predisposition to human cancers. Specifically, we show miR-204 may serve as a tumor suppressor gene at the 9q21.1–22.3 CAGR locus, a well established risk factor locus in head and neck cancers for which tumor suppressor genes have not been identified. This new strategy that integrates expression profiling, genetics and novel computational biology approaches provides for improved efficiency in characterization and modeling of microRNA functions in cancer as compared to the state of art and is applicable to the investigation of microRNA functions in other biological processes and diseases.</p
Recommended from our members
Oligo- and Polymetastatic Progression in Lung Metastasis(es) Patients Is Associated with Specific MicroRNAs
Rationale: Strategies to stage and treat cancer rely on a presumption of either localized or widespread metastatic disease. An intermediate state of metastasis termed oligometastasis(es) characterized by limited progression has been proposed. Oligometastases are amenable to treatment by surgical resection or radiotherapy.Methods: We analyzed microRNA expression patterns from lung metastasis samples of patients with ≤5 initial metastases resected with curative intent.Results: Patients were stratified into subgroups based on their rate of metastatic progression. We prioritized microRNAs between patients with the highest and lowest rates of recurrence. We designated these as high rate of progression (HRP) and low rate of progression (LRP); the latter group included patients with no recurrences. The prioritized microRNAs distinguished HRP from LRP and were associated with rate of metastatic progression and survival in an independent validation dataset.Conclusion: Oligo- and poly- metastasis are distinct entities at the clinical and molecular level.</p
Mining clinical relationships from patient narratives
Background
The Clinical E-Science Framework (CLEF) project has built a system to extract clinically significant information from the textual component of medical records in order to support clinical research, evidence-based healthcare and genotype-meets-phenotype informatics. One part of this system is the identification of relationships between clinically important entities in the text. Typical approaches to relationship extraction in this domain have used full parses, domain-specific grammars, and large knowledge bases encoding domain knowledge. In other areas of biomedical NLP, statistical machine learning (ML) approaches are now routinely applied to relationship extraction. We report on the novel application of these statistical techniques to the extraction of clinical relationships.
Results
We have designed and implemented an ML-based system for relation extraction, using support vector machines, and trained and tested it on a corpus of oncology narratives hand-annotated with clinically important relationships. Over a class of seven relation types, the system achieves an average F1 score of 72%, only slightly behind an indicative measure of human inter annotator agreement on the same task. We investigate the effectiveness of different features for this task, how extraction performance varies between inter- and intra-sentential relationships, and examine the amount of training data needed to learn various relationships.
Conclusion
We have shown that it is possible to extract important clinical relationships from text, using supervised statistical ML techniques, at levels of accuracy approaching those of human annotators. Given the importance of relation extraction as an enabling technology for text mining and given also the ready adaptability of systems based on our supervised learning approach to other clinical relationship extraction tasks, this result has significance for clinical text mining more generally, though further work to confirm our encouraging results should be carried out on a larger sample of narratives and relationship types
Network Modeling Identifies Molecular Functions Targeted by miR-204 to Suppress Head and Neck Tumor Metastasis
Due to the large number of putative microRNA gene targets predicted by sequence-alignment databases and the relative low accuracy of such predictions which are conducted independently of biological context by design, systematic experimental identification and validation of every functional microRNA target is currently challenging. Consequently, biological studies have yet to identify, on a genome scale, key regulatory networks perturbed by altered microRNA functions in the context of cancer. In this report, we demonstrate for the first time how phenotypic knowledge of inheritable cancer traits and of risk factor loci can be utilized jointly with gene expression analysis to efficiently prioritize deregulated microRNAs for biological characterization. Using this approach we characterize miR-204 as a tumor suppressor microRNA and uncover previously unknown connections between microRNA regulation, network topology, and expression dynamics. Specifically, we validate 18 gene targets of miR-204 that show elevated mRNA expression and are enriched in biological processes associated with tumor progression in squamous cell carcinoma of the head and neck (HNSCC). We further demonstrate the enrichment of bottleneckness, a key molecular network topology, among miR-204 gene targets. Restoration of miR-204 function in HNSCC cell lines inhibits the expression of its functionally related gene targets, leads to the reduced adhesion, migration and invasion in vitro and attenuates experimental lung metastasis in vivo. As importantly, our investigation also provides experimental evidence linking the function of microRNAs that are located in the cancer-associated genomic regions (CAGRs) to the observed predisposition to human cancers. Specifically, we show miR-204 may serve as a tumor suppressor gene at the 9q21.1–22.3 CAGR locus, a well established risk factor locus in head and neck cancers for which tumor suppressor genes have not been identified. This new strategy that integrates expression profiling, genetics and novel computational biology approaches provides for improved efficiency in characterization and modeling of microRNA functions in cancer as compared to the state of art and is applicable to the investigation of microRNA functions in other biological processes and diseases
- …