22 research outputs found

    Integrate mechanistic evidence from new approach methodologies (NAMs) into a read-across assessment to characterise trends in shared mode of action

    Get PDF
    This read-across case study characterises thirteen, structurally similar carboxylic acids demonstrating the application of in vitro and in silico human-based new approach methods, to determine biological similarity. Based on data from in vivo animal studies, the read-across hypothesis is that all analogues are steatotic and so should be considered hazardous. Transcriptomic analysis to determine differentially expressed genes (DEGs) in hepatocytes served as first tier testing to confirm a common mode-of-action and identify differences in the potency of the analogues. An adverse outcome pathway (AOP) network for hepatic steatosis, informed the design of an in vitro testing battery, targeting AOP relevant MIEs and KEs, and Dempster-Shafer decision theory was used to systematically quantify uncertainty and to define the minimal testing scope. The case study shows that the read-across hypothesis is the critical core to designing a robust, NAM-based testing strategy. By summarising the current mechanistic understanding, an AOP enables the selection of NAMs covering MIEs, early KEs, and late KEs. Experimental coverage of the AOP in this way is vital since MIEs and early KEs alone are not confirmatory of progression to the AO. This strategy exemplifies the workflow previously published by the EUTOXRISK project driving a paradigm shift towards NAM-based NGRA.Toxicolog

    The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods

    Get PDF
    Hazard assessment, based on new approach methods (NAM), requires the use of batteries of assays, where individual tests may be contributed by different laboratories. A unified strategy for such collaborative testing is presented. It details all procedures required to allow test information to be usable for integrated hazard assessment, strategic project decisions and/or for regulatory purposes. The EU-ToxRisk project developed a strategy to provide regulatorily valid data, and exemplified this using a panel of > 20 assays (with > 50 individual endpoints), each exposed to 19 well-known test compounds (e.g. rotenone, colchicine, mercury, paracetamol, rifampicine, paraquat, taxol). Examples of strategy implementation are provided for all aspects required to ensure data validity: (i) documentation of test methods in a publicly accessible database; (ii) deposition of standard operating procedures (SOP) at the European Union DB-ALM repository; (iii) test readiness scoring accoding to defined criteria; (iv) disclosure of the pipeline for data processing; (v) link of uncertainty measures and metadata to the data; (vi) definition of test chemicals, their handling and their behavior in test media; (vii) specification of the test purpose and overall evaluation plans. Moreover, data generation was exemplified by providing results from 25 reporter assays. A complete evaluation of the entire test battery will be described elsewhere. A major learning from the retrospective analysis of this large testing project was the need for thorough definitions of the above strategy aspects, ideally in form of a study pre-registration, to allow adequate interpretation of the data and to ensure overall scientific/toxicological validity.Toxicolog

    Identification of critical residues in novel drug metabolizing mutants of cytochrome P450 BM3 using random mutagenesis

    No full text
    Previously, we've described a site-directed triple mutant of cytochrome P450 BM3 (BM3) that is able to convert various drugs (van Vugt-Lussenburg, B. M. A., et al. Biochem. Biophys. Res. Commun. 2006, 346, 810-818). In the present study, random mutagenesis was used to improve the activity of this mutant. With three generations of error-prone PCR, mutants were obtained with 200-fold increased turnover toward drug substrates dextromethorphan and 3,4-methylenedioxymethylamphetamine. The initial activities of these mutants were up to 90-fold higher than that of human P450 2D6. These highly active drug metabolizing enzymes have great potential for biotechnology. Using sequencing analysis, the mutations responsible for the increase in activity were determined. The mutations that had the greatest effects on the activity were F81I, E267V, and particularly L86I, which is not located in the active site. Computer modeling studies were used to rationalize the effects of the mutations. This study shows that random mutagenesis can be used to identify novel critical residues, and to increase our insight into P450s. © 2007 American Chemical Society

    An effect-directed strategy for characterizing emerging chemicals in food contact materials made from paper and board

    Get PDF
    open access articleFood contact materials (FCM) are any type of item intended to come into contact with foods and thus represent a potential source for human exposure to chemicals. Regarding FCMs made of paper and board, information pertaining to their chemical constituents and the potential impacts on human health remains scarce, which hampers safety evaluation. We describe an effect-directed strategy to identify and characterize emerging chemicals in paper and board FCMs. Twenty FCMs were tested in eight reporter gene assays, including assays for the AR, ER, AhR, PPARÎł, Nrf2 and p53, as well as mutagenicity. All FCMs exhibited activities in at least one assay. As proof-of-principle, FCM samples obtained from a sandwich wrapper and a pizza box were carried through a complete step-by-step multi-tiered approach. The pizza box exhibited ER activity, likely caused by the presence of bisphenol A, dibutyl phthalate, and benzylbutyl phthalate. The sandwich wrapper exhibited AR antagonism, likely caused by abietic acid and dehydroabietic acid. Migration studies confirmed that the active chemicals can transfer from FCMs to food simulants. In conclusion, we report an effect-directed strategy that can identify hazards posed by FCMs made from paper and board, including the identification of the chemical(s) responsible for the observed activity

    Exploring the Biocatalytic Potential of a Self-Sufficient Cytochr ome P450 from Thermothelomyces thermophila

    Get PDF
    Among nature's arsenal of oxidative enzymes, cytochrome P450s (CYPs) catalyze the most challenging reactions, the hydroxylations of non‐activated C−H bonds. Human CYPs are studied in drug development due to their physiological role at the forefront of metabolic detoxification, but their challenging handling makes them unsuitable for application. CYPs have a great potential for biocatalysis, but often lack appropriate features such as high and soluble expression, self‐sufficient internal electron transport, high stability, and an engineerable substrate scope. We have probed these characteristics for a recently described CYP that originates from the thermophilic fungus Thermothelomyces thermophila (CYP505A30), a homolog of the well‐known P450‐BM3 from Bacillus megaterium. CYP505A30 is a natural monooxygenase‐reductase fusion, is well expressed, and moderately tolerant towards temperature and solvent exposure. Although overall comparable, we found the stability of the enzyme's domains to be inverse to P450‐BM3, with a more stable reductase compared to the heme domain. After analysis of a homology model, we created mutants of the enzyme based on literature data for P450‐BM3. We then probed the enzyme variants in bioconversions using a panel of active pharmaceutical ingredients, and activities were detected for a number of structurally diverse compounds. Ibuprofen was biooxidized in a preparative scale whole cell bioconversion to 1‐, 2‐ and 3‐hydroxyibuprofen

    The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods

    No full text
    Hazard assessment, based on new approach methods (NAM), requires the use of batteries of assays, where individual tests may be contributed by different laboratories. A unified strategy for such collaborative testing is presented. It details all procedures required to allow test information to be usable for integrated hazard assessment, strategic project decisions and/or for regulatory purposes. The EU-ToxRisk project developed a strategy to provide regulatorily valid data, and exemplified this using a panel of > 20 assays (with > 50 individual endpoints), each exposed to 19 well-known test compounds (e.g. rotenone, colchicine, mercury, paracetamol, rifampicine, paraquat, taxol). Examples of strategy implementation are provided for all aspects required to ensure data validity: (i) documentation of test methods in a publicly accessible database; (ii) deposition of standard operating procedures (SOP) at the European Union DB-ALM repository; (iii) test readiness scoring accoding to defined criteria; (iv) disclosure of the pipeline for data processing; (v) link of uncertainty measures and metadata to the data; (vi) definition of test chemicals, their handling and their behavior in test media; (vii) specification of the test purpose and overall evaluation plans. Moreover, data generation was exemplified by providing results from 25 reporter assays. A complete evaluation of the entire test battery will be described elsewhere. A major learning from the retrospective analysis of this large testing project was the need for thorough definitions of the above strategy aspects, ideally in form of a study pre-registration, to allow adequate interpretation of the data and to ensure overall scientific/toxicological validity.Genome Instability and Cance
    corecore