103 research outputs found

    The syntax of ‘-cā’ (*-kwe) in Ahunavaiti Gāthā

    Get PDF
    This paper seeks to provide a full description of the syntactic behaviour of the enclitic co-ordinate conjunction -cā in the earliest stage of the Avestan language. By studying the occurrences of the particle in Ahunavaiti Gāthā, a distributive analysis is provided together with an interpretative hypothesis of its distributive dynamics. Two syntactic levels, phrase and sentence, are taken into consideration. Finally, a syntactic domain-based variation is argued and two clitic functional variants are identified as synchronically operating conjunction strategies

    Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control

    Get PDF
    Local field-potentials (LFPs) are generated by neuronal ensembles and contain information about the activity of single neurons. Here, the LFPs of the cerebellar granular layer and their changes during long-term synaptic plasticity (LTP and LTD) were recorded in response to punctate facial stimulation in the rat in vivo. The LFP comprised a trigeminal (T) and a cortical (C) wave. T and C, which derived from independent granule cell clusters, co-varied during LTP and LTD. To extract information about the underlying cellular activities, the LFP was reconstructed using a repetitive convolution (ReConv) of the extracellular potential generated by a detailed multicompartmental model of the granule cell. The mossy fiber input patterns were determined using a Blind Source Separation (BSS) algorithm. The major component of the LFP was generated by the granule cell spike Na+ current, which caused a powerful sink in the axon initial segment with the source located in the soma and dendrites. Reproducing the LFP changes observed during LTP and LTD required modifications in both release probability and intrinsic excitability at the mossy fiber-granule cells relay. Synaptic plasticity and Golgi cell feed-forward inhibition proved critical for controlling the percentage of active granule cells, which was 11% in standard conditions but ranged from 3% during LTD to 21% during LTP and raised over 50% when inhibition was reduced. The emerging picture is that of independent (but neighboring) trigeminal and cortical channels, in which synaptic plasticity and feed-forward inhibition effectively regulate the number of discharging granule cells and emitted spikes generating “dense” activity clusters in the cerebellar granular layer

    YangZheng XiaoJi exerts anti-tumour growth effects by antagonising the effects of HGF and its receptor, cMET, in human lung cancer cells

    Get PDF
    BACKGROUND: Hepatocyte growth factor (HGF) is a cytokine that has a profound effect on cancer cells by stimulating migration and invasion and acting as an angiogenic factor. In lung cancer, the factor also plays a pivotal role and is linked to a poor outcome in patients. In particular, HGF is known to work in combination with EGF on lung cancer cells. In the present study, we investigated the effect of a traditional Chinese medicine reported in cancer therapies, namely YangZheng XiaoJi (YZXJ) on lung cancer and on HGF mediated migration and invasion of lung cancer cells. METHODS: Human lung cancer cells, SKMES1 and A549 were used in the study. An extract from the medicine was used. Cell migration was investigated using the EVOS and by ECIS. Cell–matrix adhesion and in vitro invasion were assessed. In vivo growth of lung cancer was tested using an in vivo xenograft tumour model and activation of the HGF receptor in lung tumours by an immunofluorescence method. RESULTS: Both lung cancer cells increased their migration in response to HGF and responded to YZXJ by reducing their speed of migration. YZXJ markedly reduced the migration and in vitro invasiveness induced by HGF. It worked synergistically with PHA665752 and SU11274, HGF receptor inhibitors on the lung cancer cells both on HGF receptor activation and on cell functions. A combination of HGF and EGF resulted in a greater increase in cell migration, which was similarly inhibited by YZXJ, and in combination with the HGF receptor and EGF receptor inhibitors. In vivo, YZXJ reduced the rate of tumour growth and potentiated the effects of PHA665752 on tumour growth. It was further revealed that YZXJ significantly reduced the degree of phosphorylation of the HGF receptor in lung tumours. CONCLUSION: YZXJ has a significant role in reducing the migration, invasion and in vivo tumour growth of lung cancer and acts to inhibit the migratory and invasive effects induced by HGF and indeed by HGF/EGF. This effect is likely attributed to the inhibition of the HGF receptor activation. These results indicate that YZXJ has a therapeutic role in lung cancer and that combined strategy with methods to block HGF and EGF should be considered. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-015-0639-1) contains supplementary material, which is available to authorized users

    Microcatheter tracking in thrombectomy procedures: A finite-element simulation study

    Get PDF
    Background and objective: Mechanical thrombectomy is a minimally invasive procedure that aims at removing the occluding thrombus from the vasculature of acute ischemic stroke patients. Thrombectomy success and failure can be studied using in-silico thrombectomy models. Such models require realistic modeling steps to be effective. We here present a new approach to model microcatheter tracking during thrombectomy. Methods: For 3 patient-specific vessel geometries, we performed finite-element simulations of the microcatheter tracking (1) following the vessel centerline (centerline method) and (2) as a one-step insertion simulation, where the microcatheter tip was advanced along the vessel centerline while its body was free to interact with the vessel wall (tip-dragging method). Qualitative validation of the two tracking methods was performed with the patient's digital subtraction angiography (DSA) images. In addition, we compared simulated thrombectomy outcomes (successful vs unsuccessful thrombus retrieval) and maximum principal stresses on the thrombus between the centerline and tip-dragging method. Results: Qualitative comparison with the DSA images showed that the tip-dragging method more realistically resembles the patient-specific microcatheter-tracking scenario, where the microcatheter approaches the vessel walls. Although the simulated thrombectomy outcomes were similar in terms of thrombus retrieval, the thrombus stress fields (and the associated fragmentation of the thrombus) were strongly different between the two methods, with local differences in the maximum principal stress curves up to 84%. Conclusions: Microcatheter positioning with respect to the vessel affects the stress fields of the thrombus during retrieval, and therefore, may influence thrombus fragmentation and retrieval in-silico thrombectomy

    Ockham’s razor for the MET-driven invasive growth linking idiopathic pulmonary fibrosis and cancer

    Full text link
    corecore