4 research outputs found

    Internal Models in the Cerebellum: A Coupling Scheme for Online and Offline Learning in Procedural Tasks

    Get PDF
    The cerebellum plays a major role in motor control. It is thought to mediate the acquisition of forward and inverse internal models of the bodyenvironment interaction [1]. In this study, the main processing components of the cerebellar microcomplex are modelled as a network of spiking neural populations. The model cerebellar circuit is shown to be suitable for learning both forward and inverse models. A new coupling scheme is put forth to optimise online adaptation and support offline learning. The proposed model is validated on two procedural tasks and the simulation results are consistent with data from human experiments on adaptive motor control and sleep-dependent consolidation [2, 3]. This work corroborates the hypothesis that both forward and inverse internal models can be learnt and stored by the same cerebellar circuit, and that their coupling favours online and offline learning of procedural memories

    Bidirectional recurrent learning of inverse dynamic models for robots with elastic joints: a real-time real-world implementation

    Get PDF
    Collaborative robots, or cobots, are designed to work alongside humans and to alleviate their physical burdens, such as lifting heavy objects or performing tedious tasks. Ensuring the safety of human–robot interaction (HRI) is paramount for effective collaboration. To achieve this, it is essential to have a reliable dynamic model of the cobot that enables the implementation of torque control strategies. These strategies aim to achieve accurate motion while minimizing the amount of torque exerted by the robot. However, modeling the complex non-linear dynamics of cobots with elastic actuators poses a challenge for traditional analytical modeling techniques. Instead, cobot dynamic modeling needs to be learned through data-driven approaches, rather than analytical equation-driven modeling. In this study, we propose and evaluate three machine learning (ML) approaches based on bidirectional recurrent neural networks (BRNNs) for learning the inverse dynamic model of a cobot equipped with elastic actuators. We also provide our ML approaches with a representative training dataset of the cobot's joint positions, velocities, and corresponding torque values. The first ML approach uses a non-parametric configuration, while the other two implement semi-parametric configurations. All three ML approaches outperform the rigid-bodied dynamic model provided by the cobot's manufacturer in terms of torque precision while maintaining their generalization capabilities and real-time operation due to the optimized sample dataset size and network dimensions. Despite the similarity in torque estimation of these three configurations, the non-parametric configuration was specifically designed for worst-case scenarios where the robot dynamics are completely unknown. Finally, we validate the applicability of our ML approaches by integrating the worst-case non-parametric configuration as a controller within a feedforward loop. We verify the accuracy of the learned inverse dynamic model by comparing it to the actual cobot performance. Our non-parametric architecture outperforms the robot's default factory position controller in terms of accuracy.IMOCOe4.0 [EU H2020RIA-101007311]Spanish national funding [PCI2021-121925INTSENSO [MICINN-FEDER-PID2019- 109991GB-I00]INTARE (TED2021-131466B-I00) projects funded by MCIN/AEI/10.13039/501100011033EU NextGenerationEU/PRTR to ERThe SPIKEAGE [MICINN629PID2020-113422GAI00]DLROB [TED2021 131294B-I00]Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRT

    Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation

    Get PDF
    The cerebellum is known to play a critical role in learning relevant patterns of activity for adaptive motor control, but the underlying network mechanisms are only partly understood. The classical long-term synaptic plasticity between parallel fibers (PFs) and Purkinje cells (PCs), which is driven by the inferior olive (IO), can only account for limited aspects of learning. Recently, the role of additional forms of plasticity in the granular layer, molecular layer and deep cerebellar nuclei (DCN) has been considered. In particular, learning at DCN synapses allows for generalization, but convergence to a stable state requires hundreds of repetitions. In this paper we have explored the putative role of the IO-DCN connection by endowing it with adaptable weights and exploring its implications in a closed-loop robotic manipulation task. Our results show that IO-DCN plasticity accelerates convergence of learning by up to two orders of magnitude without conflicting with the generalization properties conferred by DCN plasticity. Thus, this model suggests that multiple distributed learning mechanisms provide a key for explaining the complex properties of procedural learning and open up new experimental questions for synaptic plasticity in the cerebellar network.This work was supported by grants from the European Union, Egidio D'Angelo and Eduardo Ros (CEREBNET FP7-ITN238686, REALNET FP7-ICT270434) and by grants from the Italian Ministry of Health to Egidio D'Angelo (RF-2009-1475845) and the Spanish Regional Government, Niceto R. Luque (PYR-2014-16). We thank G. Ferrari and M. Rossin for their technical support

    Bio-inspired robotic control schemes using biologically plausible neural structures

    No full text
    Tesis Univ. Granada. Departamento de Arquitectura y TecnologĂ­a de ComputadoresThis work was partly supported by the Spanish subprogram FPU 2007 (MICINN), and the EU projects SENSOPAC (IST-028056), and REALNET (IST-270434
    corecore