107 research outputs found

    Temporal dynamics of gene expression in the lung in a baboon model of E. coli sepsis

    Get PDF
    BACKGROUND: Bacterial invasion during sepsis induces disregulated systemic responses that could lead to fatal lung failure. The purpose of this study was to relate the temporal dynamics of gene expression to the pathophysiological changes in the lung during the first and second stages of E. coli sepsis in baboons. RESULTS: Using human oligonucleotide microarrays, we have explored the temporal changes of gene expression in the lung of baboons challenged with sublethal doses of E. coli. Temporal expression pattern and biological significance of the differentially expressed genes were explored using clustering and pathway analysis software. Expression of selected genes was validated by real-time PCR. Cytokine levels in tissue and plasma were assayed by multiplex ELISA. Changes in lung ultrastructure were visualized by electron microscopy. We found that genes involved in primary inflammation, innate immune response, and apoptosis peaked at 2 hrs. Inflammatory and immune response genes that function in the stimulation of monocytes, natural killer and T-cells, and in the modulation of cell adhesion peaked at 8 hrs, while genes involved in wound healing and functional recovery were upregulated at 24 hrs. CONCLUSION: The analysis of gene expression modulation in response to sepsis provides the baseline information that is crucial for the understanding of the pathophysiology of systemic inflammation and may facilitate the development of future approaches for sepsis therapy

    Junctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin–mediated cell–cell contacts

    Get PDF
    We recently reported that junctional adhesion molecule (JAM)-C plays a role in leukocyte transendothelial migration. Here, the role of JAM-C in vascular permeability was investigated in vitro and in vivo. As opposed to macrovascular endothelial cells that constitutively expressed JAM-C in cell–cell contacts, in quiescent microvascular endothelial cells, JAM-C localized mainly intracellularly, and was recruited to junctions upon short-term stimulation with vascular endothelial growth factor (VEGF) or histamine. Strikingly, disruption of JAM-C function decreased basal permeability and prevented the VEGF- and histamine-induced increases in human dermal microvascular endothelial cell permeability in vitro and skin permeability in mice. Permeability increases are essential in angiogenesis, and JAM-C blockade reduced hyperpermeability and neovascularization in hypoxia-induced retinal angiogenesis in mice. The underlying mechanisms of the JAM-C–mediated increase in endothelial permeability were studied. JAM-C was essential for the regulation of endothelial actomyosin, as revealed by decreased F-actin, reduced myosin light chain phosphorylation, and actin stress fiber formation due to JAM-C knockdown. Moreover, the loss of JAM-C expression resulted in stabilization of VE-cadherin–mediated interendothelial adhesion in a manner dependent on the small GTPase Rap1. Together, through modulation of endothelial contractility and VE-cadherin–mediated adhesion, JAM-C helps to regulate vascular permeability and pathologic angiogenesis

    Neutrophil extracellular trap inhibition increases inflammation, bacteraemia and mortality in murine necrotizing enterocolitis

    Get PDF
    Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease affecting primarily premature infants. The disease is characterized by intestinal inflammation and leucocyte infiltration, often progressing to necrosis, perforation, systemic inflammatory response and death. Neutrophil extracellular traps (NETs), denoting nuclear DNA, histone and antimicrobial protein release, have been suggested to play a role in NEC. This study aimed to determine the role of NETs in NEC and explore the effect of chloramidine, a NET inhibitor, on a murine NEC-like intestinal injury model. Blood and intestinal tissues were collected from infants diagnosed with ≥ Stage II NEC, and levels of nucleosomes and NETs, respectively, were compared with those of case-matched controls. In mice, NEC was induced with dithizone/Klebsiella, and mice in the treatment group received 40 mg/kg chloramidine. Bacterial load, intestinal histology, plasma myeloperoxidase and cytokine levels, and immunofluorescent staining were compared with controls. Nucleosomes were significantly elevated in both human and mouse NEC plasma, whereas NET staining was only present in NEC tissue in both species. Chloramidine treatment increased systemic inflammation, bacterial load, organ injury and mortality in murine NEC. Taken together, our findings suggest that NETs are critical in the innate immune defence during NEC in preventing systemic bacteraemia

    Acceleration of small intestine development and remodeling of the microbiome following hyaluronan 35 KDa treatment in neonatal mice

    Get PDF
    The beneficial effects of human milk suppressing the development of intestinal pathologies such as necrotizing enterocolitis in preterm infants are widely known. Human milk (HM) is rich in a multitude of bioactive factors that play major roles in promoting postnatal maturation, differentiation, and the development of the microbiome. Previous studies showed that HM is rich in hyaluronan (HA) especially in colostrum and early milk. This study aims to determine the role of HA 35 KDa, a HM HA mimic, on intestinal proliferation, differentiation, and the development of the intestinal microbiome. We show that oral HA 35 KDa supplementation for 7 days in mouse pups leads to increased villus length and crypt depth, and increased goblet and Paneth cells, compared to controls. We also show that HA 35 KDa leads to an increased predominance of Clostridiales Ruminococcaceae, Lactobacillales Lactobacillaceae, and Clostridiales Lachnospiraceae. In seeking the mechanisms involved in the changes, bulk RNA seq was performed on samples from the terminal ileum and identified upregulation in several genes essential for cellular growth, proliferation, and survival. Taken together, this study shows that HA 35 KDa supplemented to mouse pups promotes intestinal epithelial cell proliferation, as well as the development of Paneth cells and goblet cell subsets. HA 35 KDa also impacted the intestinal microbiota; the implications of these responses need to be determined

    MANIFESTÄ‚RILE TUBULUI DIGESTIV SUPERIOR LA PACIENTUL CU IRC DIALIZAT

    Get PDF
    Introducere: bolnavii cu IRC sunt susceptibili la o gamă largă de complicaţii: refl ux gastro-esofagian, esofagită, gastropatie, gastrită şi duodenită, ulcer gastric şi duodenal, angiodisplazie. Obiective: studiul a constat în evidenţierea simptomelor gastro-duodenale, a frecvenţei modifi cărilor patologice ale mucoasei eso-gastro-duodenale şi a prezenţei H.pylori la copiii cu IRC afl aţi în program de dializă. Material şi metodă: lotul de studiu a fost format din 55 de copii internaţi în Clinica a IV-a Nefrologie, afl aţi în program de substituţie renală cronică, la care s-a aplicat un protocol ce a sistematizat: simptomele obiective şi subiective şi rezultatele endoscopiei digestive superioare. Lotul cuprinde bolnavii cu modifi cări ale mucoasei depistate endoscopic. Concluzii: modifi cările patologice ale mucoasei eso-gastro-duodenale la copilul dializat cronic se refl ectă clinic inconstant, ceea ce sugerează necesitatea endoscopiei pentru fi ecare caz. Prezenţa H.pylori la 24/55 (43,63%) cazuri biopsiate evidenţiază asocierea relativ frecventă între leziunile gastro-duodenale şi H.pylori la pacienţii dializaţi cronic

    Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1–derived O-glycans

    Get PDF
    The core 1 β1-3-galactosyltransferase (T-synthase) transfers Gal from UDP-Gal to GalNAcα1-Ser/Thr (Tn antigen) to form the core 1 O-glycan Galβ1-3GalNAcα1-Ser/Thr (T antigen). The T antigen is a precursor for extended and branched O-glycans of largely unknown function. We found that wild-type mice expressed the NeuAcα2-3Galβ1-3GalNAcα1-Ser/Thr primarily in endothelial, hematopoietic, and epithelial cells during development. Gene-targeted mice lacking T-synthase instead expressed the nonsialylated Tn antigen in these cells and developed brain hemorrhage that was uniformly fatal by embryonic day 14. T-synthase–deficient brains formed a chaotic microvascular network with distorted capillary lumens and defective association of endothelial cells with pericytes and extracellular matrix. These data reveal an unexpected requirement for core 1–derived O-glycans during angiogenesis

    Anti–miR-93-5p therapy prolongs sepsis survival by restoring the peripheral immune response

    Get PDF
    Sepsis remains a leading cause of death for humans and currently has no pathogenesis-specific therapy. Hampered progress is partly due to a lack of insight into deep mechanistic processes. In the past decade, deciphering the functions of small noncoding miRNAs in sepsis pathogenesis became a dynamic research topic. To screen for new miRNA targets for sepsis therapeutics, we used samples for miRNA array analysis of PBMCs from patients with sepsis and control individuals, blood samples from 2 cohorts of patients with sepsis, and multiple animal models: mouse cecum ligation puncture–induced (CLP-induced) sepsis, mouse viral miRNA challenge, and baboon Gram+ and Gram– sepsis models. miR-93-5p met the criteria for a therapeutic target, as it was overexpressed in baboons that died early after induction of sepsis, was downregulated in patients who survived after sepsis, and correlated with negative clinical prognosticators for sepsis. Therapeutically, inhibition of miR-93-5p prolonged the overall survival of mice with CLP-induced sepsis, with a stronger effect in older mice. Mechanistically, anti–miR-93-5p therapy reduced inflammatory monocytes and increased circulating effector memory T cells, especially the CD4+ subset. AGO2 IP in miR-93–KO T cells identified important regulatory receptors, such as CD28, as direct miR-93-5p target genes. In conclusion, miR-93-5p is a potential therapeutic target in sepsis through the regulation of both innate and adaptive immunity, with possibly a greater benefit for elderly patients than for young patients

    STUDIES AND APPLICATIONS OF ABSOLUTE STABILITY OF THE NONLINEAR DYNAMICAL SYSTEMS

    No full text
    In this paper there are presented methods of study for the automatic regulation of the absolute stability in case of the nonlinear dynamical systems. There are specified two methods for the absolute stability with criteria and mode of application: a) the Lurie method with the effective determination of the Liapunov function; b) the frequencies method of the Romanian researcher V. M. Popov using the transfer function for the critical cases. The nonlinear dynamical systems which include nonlinear and linear blocks are reported to the special classes. Due to the coposed perturbations with inverse response action of the automatic regulator components these will lead to obtaining an absolute stable regime. The mathematical modelling is numerically analysed, and the realized application by these two methods is used in the metal cutting tools machine, in the absolute stability of the rate of aircrafts equipped with autopilot or in the case of the rolling oscillations for the ships
    • …
    corecore