2,110 research outputs found
Helium-3 in the Guaymas Basin: Evidence for injection of mantle volatiles in the Gulf of California
Helium isotope measurements in six major basins in the Gulf of California show that the deep Guaymas Basin has 3He/4He 65â70% higher than atmospheric helium, clear evidence of mantle helium injection. Smaller 3He excesses observed in the Carmen and Farallon basins may be derived from this Guaymas Basin anomaly. The 3He concentrations in the Mazatlan Basin in the mouth of the Gulf of California are similar to average eastern Pacific values, indicating that the Gulf does not provide a significant flux of 3He into the general Pacific circulation. On the basis of temperature and salinity measurements an upper limit of 0.28°C can be placed on the amount of geothermal heating observed in any of the basins. The isotopic ratio of the injected Guaymas Basin helium is found to be 3He/4He = (1.10±0.06) Ă 10â5, almost identical to the helium signature observed at the Galapagos Rift but somewhat lower than the average ratio in oceanic basalt glasses
Evolution of the south Pacific helium plume over the past three decades
Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 18 (2017): 1810â1823, doi:10.1002/2017GC006848.The recent GEOTRACES Eastern Pacific Zonal Transect in 2013 crossed the East Pacific Rise at 15°S following the same track as the 1987 Helios Expedition along the core of the mid-depth helium plume that spreads westward from the East Pacific Rise (EPR) axis. The fact that several stations were co-located with the earlier Helios stations has allowed a detailed comparison of the changes in the helium plume over the intervening 26 years. While the plume in many areas is unchanged, there is a marked decrease in plume intensity at longitude 120°W in the 2013 data which was not present in 1987. Recent radioisotope measurements along the plume track suggest that this decrease is due to the intrusion of a different water mass into the plume, rather than a modulation of hydrothermal input on the EPR axis. Analysis of GEOTRACES hydrographic data shows excess heat present in the plume up to 0.04°C, corresponding to a 3He/heat ratio of âŒ2.5 Ă 10â18 mol Jâ1, similar to that found in mature hydrothermal vents. RAFOS floats deployed in 1987 indicate an average westward transport of âŒ0.3 cm sâ1 at 2500 m depth in the off-axis plume, in agreement with recent estimates of âŒ0.4 cm sâ1 based on âagingâ of the plume from 227Ac/3He ratios.Earth Ocean Interactions Program;
NOAA Pacific Marine Environmental Laboratory2017-11-0
Evidence for an extensive hydrothermal plume in the Tonga-Fiji region of the South Pacific
Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q01003, doi:10.1029/2003GC000607.Several hydrographic stations in the vicinity of the Samoa Islands have 3He/4He above the regional background in the depth range of 1500â1800 m, indicating injection of mantle helium from a local hydrothermal source. The highest ÎŽ(3He) = 43.4% was detected at 1726-m depth at 15.0°S, 173.1°W in the bathymetric gap between the Samoa Islands and the northern end of the Tonga-Kermadec Arc. The ÎŽ(3He) profile at this station decreases to ÎŽ(3He) = 26% at 2500-m depth. The relatively shallow depth of the maximum hydrothermal signal suggests a source different from the conventional Pacific basin helium plume centered at 2500 m that is carried westward from the East Pacific Rise. Stations to the west of this locality show a progressive decrease in the maximum ÎŽ(3He) values in the depth range of 1480â1790 m out to 169°E. Stations east of the Tonga-Fiji region show lower 3He values (<26%) at 1700 m and the profiles are dominated by a deeper maximum at 2500 m, presumably the distal traces of hydrothermal input from East Pacific Rise. This pattern in the 3He distribution suggests that the 1700-m deep helium plume is carried in a northwesterly direction some 2000 km from its source near the northern end of the Tonga-Kermadec Arc. At this time very little is known about the source of this hydrothermal plume or the details of its areal extent. Numerous seamounts and rift zones in the region are possible hydrothermal sources for the plume. The summit crater of Vailulu'u, a young seamount at the eastern end of the Samoa chain, was recently discovered to be hydrothermally active at âŒ600 m depth [Hart et al., 2000]. However this shallow hydrothermal field on Vailulu'u is an unlikely source for the deeper 1700-m signal. The most likely source would appear to be the extensional zones of the northern Lau Basin system, such as the Mangatolo Triple Junction. Just as the helium plume emanating from Lo'ihi has helped our understanding of the circulation near the Hawaiian Islands [Lupton, 1996], this helium plume in the Tonga-Fiji region has great potential for delineating circulation in this area of the south Pacific.This work was supported by the NOAA Vents Program and by Grants OCE91-05884, OCE92-96237, OCE92-96169, and OCE98-20132 of the Ocean Sciences Division of the National Science Foundation
Source Matching in the SDSS and RASS: Which Galaxies are Really X-ray Sources?
The current view of galaxy formation holds that all massive galaxies harbor a
massive black hole at their center, but that these black holes are not always
in an actively accreting phase. X-ray emission is often used to identify
accreting sources, but for galaxies that are not harboring quasars
(low-luminosity active galaxies), the X-ray flux may be weak, or obscured by
dust. To aid in the understanding of weakly accreting black holes in the local
universe, a large sample of galaxies with X-ray detections is needed. We
cross-match the ROSAT All Sky Survey (RASS) with galaxies from the Sloan
Digital Sky Survey Data Release 4 (SDSS DR4) to create such a sample. Because
of the high SDSS source density and large RASS positional errors, the
cross-matched catalog is highly contaminated by random associations. We
investigate the overlap of these surveys and provide a statistical test of the
validity of RASS-SDSS galaxy cross-matches. SDSS quasars provide a test of our
cross-match validation scheme, as they have a very high fraction of true RASS
matches. We find that the number of true matches between the SDSS main galaxy
sample and the RASS is highly dependent on the optical spectral classification
of the galaxy; essentially no star-forming galaxies are detected, while more
than 0.6% of narrow-line Seyferts are detected in the RASS. Also, galaxies with
ambiguous optical classification have a surprisingly high RASS detection
fraction. This allows us to further constrain the SEDs of low-luminosity active
galaxies. Our technique is quite general, and can be applied to any
cross-matching between surveys with well-understood positional errors.Comment: 10 pages, 10 figures, submitted to The Astronomical Journal on 19
June 200
A Catalogue of Morphologically Classified Galaxies from the Sloan Digital Sky Survey: North Equatorial Region
We present a catalogue of morphologically classified bright galaxies in the
north equatorial stripe (230 deg) derived from the Third Data Release of
the Sloan Digital Sky Survey (SDSS). Morphological classification is performed
by visual inspection of images in the band. The catalogue contains 2253
galaxies complete to a magnitude limit of after Galactic extinction
correction, selected from 2658 objects that are judged as extended in the
photometric catalogue in the same magnitude limit. 1866 galaxies in our
catalogue have spectroscopic information. A brief statistical analysis is
presented for the frequency of morphological types and mean colours in the
catalogue. A visual inspection of the images reveals that the rate of
interacting galaxies in the local Universe is approximately 1.5% in the
sample. A verification is made for the photometric catalogue generated
by the SDSS, especially as to its bright end completeness.Comment: Accepted for publication in Astronomical Journal. Table 2 available
at http://www.icrr.u-tokyo.ac.jp/~fukugita/MCGpaper/table2.tx
Mantle 3He distribution and deep circulation in the Indian Ocean
Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C06012, doi:10.1029/2003JC002028.The World Ocean Circulation Experiment Indian Ocean helium isotope data are mapped and features of intermediate and deep circulation are inferred and discussed. The 3He added to the deep Indian Ocean originates from (1) a strong source on the mid-ocean ridge at about 19°S/65°E, (2) a source located in the Gulf of Aden in the northwestern Indian Ocean, (3) sources located in the convergent margins in the northeastern Indian Ocean, and (4) water imported from the Indonesian Seas. The main circulation features inferred from the 3He distribution include (1) deep (2000â3000 m) eastward flow in the central Indian Ocean, which overflows into the West Australian Basin through saddles in the Ninetyeast Ridge, (2) a deep (2000â3000 m) southwestward flow in the western Indian Ocean, and (3) influx of Banda Sea Intermediate Waters associated with the deep core (1000â1500 m) of the through flow from the Pacific Ocean. The large-scale 3He distribution is consonant with the known pathways of deep and bottom water circulation in the Indian Ocean.National Science Foundation support is acknowledged for the
UM part of the work through grants OCE-9820131 and OCE-998150.
Support for the LDEO portion of the work was obtained from the National
Science Foundation through awards OCE 94-13162 and OCE 98-20130
The Lyman-alpha Forest Power Spectrum from the Sloan Digital Sky Survey
We measure the power spectrum, P_F(k,z), of the transmitted flux in the
Ly-alpha forest using 3035 high redshift quasar spectra from the Sloan Digital
Sky Survey. This sample is almost two orders of magnitude larger than any
previously available data set, yielding statistical errors of ~0.6% and ~0.005
on, respectively, the overall amplitude and logarithmic slope of P_F(k,z). This
unprecedented statistical power requires a correspondingly careful analysis of
the data and of possible systematic contaminations in it. For this purpose we
reanalyze the raw spectra to make use of information not preserved by the
standard pipeline. We investigate the details of the noise in the data,
resolution of the spectrograph, sky subtraction, quasar continuum, and metal
absorption. We find that background sources such as metals contribute
significantly to the total power and have to be subtracted properly. We also
find clear evidence for SiIII correlations with the Ly-alpha forest and suggest
a simple model to account for this contribution to the power. While it is
likely that our newly developed analysis technique does not eliminate all
systematic errors in the P_F(k,z) measurement below the level of the
statistical errors, our tests indicate that any residual systematics in the
analysis are unlikely to affect the inference of cosmological parameters from
P_F(k,z). These results should provide an essential ingredient for all future
attempts to constrain modeling of structure formation, cosmological parameters,
and theories for the origin of primordial fluctuations.Comment: 92 pages, 45 of them figures, submitted to ApJ, data available at
http://feynman.princeton.edu/~pmcdonal/LyaF/sdss.htm
The UV, Optical, and IR Properties of SDSS Sources Detected by GALEX
We discuss the UV, optical, and IR properties of the SDSS sources detected by
GALEX as part of its All-sky Imaging Survey Early Release Observations.
Virtually all of the GALEX sources in the overlap region are detected by SDSS.
GALEX sources represent ~2.5% of all SDSS sources within these fields and about
half are optically unresolved. Most unresolved GALEX/SDSS sources are bright
blue turn-off thick disk stars and are typically detected only in the GALEX
near-UV band. The remaining unresolved sources include low-redshift quasars,
white dwarfs, and white dwarf/M dwarf pairs, and these dominate the optically
unresolved sources detected in both GALEX bands.
Almost all the resolved SDSS sources detected by GALEX are fainter than the
SDSS 'main' spectroscopic limit. These sources have colors consistent with
those of blue (spiral) galaxies (u-r<2.2), and most are detected in both GALEX
bands. Measurements of their UV colors allow much more accurate and robust
estimates of star-formation history than are possible using only SDSS data.
Indeed, galaxies with the most recent (<20 Myr) star formation can be robustly
selected from the GALEX data by requiring that they be brighter in the far-UV
than in the near-UV band. However, older starburst galaxies have UV colors
similar to AGN, and thus cannot be selected unambiguously on the basis of GALEX
fluxes alone.
With the aid of 2MASS data, we construct and discuss median 10 band
UV-optical-IR spectral energy distributions for turn-off stars, hot white
dwarfs, low-redshift quasars, and spiral and elliptical galaxies. We point out
the high degree of correlation between the UV color and the contribution of the
UV flux to the UV-optical-IR flux of galaxies detected by GALEX.Comment: 35 pages, 11 figures, 3 tables; to appear in the AJ. PS with better
figures available from http://www.astro.washington.edu/agueros/pub
CHARIS Science: Performance Simulations for the Subaru Telescope's Third-Generation of Exoplanet Imaging Instrumentation
We describe the expected scientific capabilities of CHARIS, a high-contrast
integral-field spectrograph (IFS) currently under construction for the Subaru
telescope. CHARIS is part of a new generation of instruments, enabled by
extreme adaptive optics (AO) systems (including SCExAO at Subaru), that promise
greatly improved contrasts at small angular separation thanks to their ability
to use spectral information to distinguish planets from quasistatic speckles in
the stellar point-spread function (PSF). CHARIS is similar in concept to GPI
and SPHERE, on Gemini South and the Very Large Telescope, respectively, but
will be unique in its ability to simultaneously cover the entire near-infrared
, , and bands with a low-resolution mode. This extraordinarily broad
wavelength coverage will enable spectral differential imaging down to angular
separations of a few , corresponding to 0.\!\!''1. SCExAO
will also offer contrast approaching at similar separations,
0.\!\!''1--0.\!\!''2. The discovery yield of a CHARIS survey will
depend on the exoplanet distribution function at around 10 AU. If the
distribution of planets discovered by radial velocity surveys extends unchanged
to 20 AU, observations of 200 mostly young, nearby stars targeted
by existing high-contrast instruments might find 1--3 planets. Carefully
optimizing the target sample could improve this yield by a factor of a few,
while an upturn in frequency at a few AU could also increase the number of
detections. CHARIS, with a higher spectral resolution mode of , will
also be among the best instruments to characterize planets and brown dwarfs
like HR 8799 cde and And b.Comment: 13 pages, 7 figures, proceedings from SPIE Montrea
Sloan Digital Sky Survey Multicolor Observations of GRB010222
The discovery of an optical counterpart to GRB010222 (detected by BeppoSAX;
Piro 2001) was announced 4.4 hrs after the burst by Henden (2001a). The Sloan
Digital Sky Survey's 0.5m photometric telescope (PT) and 2.5m survey telescope
were used to observe the afterglow of GRB010222 starting 4.8 hours after the
GRB. The 0.5m PT observed the afterglow in five, 300 sec g' band exposures over
the course of half an hour, measuring a temporal decay rate in this short
period of F_nu \propto t^{-1.0+/-0.5}. The 2.5m camera imaged the counterpart
nearly simultaneously in five filters (u' g' r' i' z'), with r' = 18.74+/-0.02
at 12:10 UT. These multicolor observations, corrected for reddening and the
afterglow's temporal decay, are well fit by the power-law F_nu \propto
nu^{-0.90+/-0.03} with the exception of the u' band UV flux which is 20% below
this slope. We examine possible interpretations of this spectral shape,
including source extinction in a star forming region.Comment: 8 pages, 4 figures, accepted for publication in ApJ. Two figures
added, minor changes to text in this draft. Related material can be found at:
http://sdss.fnal.gov:8000/grb
- âŠ