75 research outputs found

    Excited state dynamics and exciton diffusion in triphenylamine/dicyanovinyl push-pull small molecule for organic optoelectronics

    Get PDF
    Triphenylamine-based small push-pull molecules have recently attracted substantial research attention due to their unique optoelectronic properties. Here, we investigate the excited state de-excitation dynamics and exciton diffusion in TPA-T-DCV-Ph-F small molecule, having simple chemical structure with asymmetrical architecture and end-capped with electron-withdrawing p-fluorodicyanovinyl group. The excited state lifetime in diluted solutions (0.04 ns in toluene and 0.4 ns in chloroform) are found to be surprisingly shorter compared to the solid state (3 ns in PMMA matrix). Time-dependent density functional theory indicates that this behavior originates from non-radiative relaxation of the excited state through a conical intersection between the ground and singlet excited state potential energy surfaces. Exciton diffusion length of similar to 16 nm in solution processed films was retrieved by employing time-resolved photoluminescence volume quenching measurements with Monte Carlo simulations. As means of investigating the device performance of TPA-T-DCV-Ph-F, we manufactured solution and vacuum processed bulk heterojunction solar cells that yielded efficiencies of similar to 1.5% and similar to 3.7%, respectively. Our findings demonstrate that the short lifetime in solutions does not hinder per se long exciton diffusion length in films thereby granting applications of TPA-T-DCV-Ph-F and similar push-pull molecules in vacuum and solution processable devices

    Highly Luminescent Solution-Grown Thiophene-Phenylene Co-Oligomer Single Crystals

    Get PDF
    Thiophene-phenylene co-oligomers (TPCOs) are among the most promising materials for organic light emitting devices. Here we report on record high among TPCO single crystals photoluminescence quantum yield reaching 60%. The solution-grown crystals are stronger luminescent than the vapor-grown ones, in contrast to a common believe that the vapor-processed organic electronic materials show the highest performance. We also demonstrate that the solution grown TPCO single crystals perform in organic field effect transistors as good as the vapor-grown ones. Altogether, the solution-grown TPCO crystals are demonstrated to hold great potential for organic electronics.</p

    Pixelated full-colour small molecule semiconductor devices towards artificial retinas

    Get PDF
    Opto-stimulation of semiconductor-biointerfaces provides efficient pathways towards eliciting neural activity through selective spectral excitation. In visual prosthesis, tri-colour stimulation capability is the key to restoring full-colour vision. Here we report on investigation of organic photoactive π-conjugated donor–acceptor small molecules based on triphenylamine whose absorption spectra are similar to those of the photoreceptors of the human eye. Photoactive device fabrication and characterisation towards full colour, pixelated retinal prosthesis based on inkjet printing of these molecules is demonstrated, with round pixels reaching 25 microns in diameter. Photo-response is studied via interfacing with biological electrolyte solution and using long-pulse, narrow-band excitation. Both photo-voltage and photo-current responses in the devices with a ZnO hole-blocking interlayer show clear signatures of capacitive charging at the electrolyte/device interface, also demonstrating spectral selectivity comparable to that of human eye’ cones and rods

    Phase Transitions and Formation of a Monolayer-Type Structure in Thin Oligothiophene Films: Exploration with a Combined In Situ X-ray Diffraction and Electrical Measurements

    Get PDF
    A combination of in situ electrical and grazing-incidence X-ray diffraction (GIXD) is a powerful tool for studies of correlations between the microstructure and charge transport in thin organic films. The information provided by such experimental approach can help optimizing the performance of the films as active layers of organic electronic devices. In this work, such combination of techniques was used to investigate the phase transitions in vacuum-deposited thin films of a common organic semiconductor dihexyl-quarterthiophene (DH4T). A transition from the initial highly crystalline phase to a mesophase was detected upon heating, while only a partial backward transition was observed upon cooling to room temperature. In situ electrical conductivity measurements revealed the impact of both transitions on charge transport. This is partly accounted for by the fact that the initial crystalline phase is characterized by inclination of molecules in the plane perpendicular to the π-π stacking direction, whereas the mesophase is built of molecules tilted in the direction of π-π stacking. Importantly, in addition to the two phases of DH4T characteristic of the bulk, a third interfacial substrate-stabilized monolayer-type phase was observed. The existence of such interfacial structure can have important implications for the charge mobility, being especially favorable for lateral two-dimensional charge transport in the organic field-effect transistors geometry

    The effectiveness of agrotextile cover with organic photoluminophore in rooting cuttings of Hungarian lilac (Syringa josikaea J. Jacq. ex Rchb.)

    No full text
    The effectiveness of the use of a light-transforming shelter of vegetation structures consisting of a polypropylene spunbond with an organic photoluminophore integrated into its structure during the rooting of physiologically active stem cuttings of Hungarian lilac was studied. The object of the study was reproductively mature Hungarian lilac plants located in the arboretum of the Nizhny Novgorod State Agricultural Academy with geographical coordinates 56°14'32.7” N 43°57'20.7”E. The unequal reaction of the tested samples of Hungarian lilac to the use of luminophore in the shelters of vegetation structures during the rooting of cuttings was established, which manifested itself in all characteristics of regeneration processes. High rates of callus formation were in the shelter variants with a higher concentration of luminophore: 73.16 ± 5.95% and 65.25± 4.80%. Lower than in other shelters, the result was recorded in the variant with the lowest luminophore density: 47.00 ± 3.62%

    In Situ Coupling Applied Voltage and Synchrotron Radiation: Operando Characterization of Transistors

    No full text
    A compact voltage application setup has been developed for in situ electrical testing of organic field effect transistors in combination with X-ray scattering studies at a synchrotron beamlines. Challenges faced during real condition in-operando test of newly developed OFETs originated an idea of creation of a new setup which excludes number of factors that make experiments complicated. The application of the setup is demonstrated on a prototype of an organic transistors based on α,ω-dihexyl-α-quaterthiophene molecules. The new setup allows to monitor material structural changes by X-ray scattering under applied voltage conditions and their direct correlations. The versatile setup eliminates possible shadowing effects and short circuits due to misalignment of the contacts. The electrical stability of the prototypes was characterized by the application of different voltage values. Corresponding structural changes were monitored by grazing X-ray scattering technique before, during and after the voltage was applied. The selected oligothiophene material with proved transistor properties shows high stability and directional anisotropy under applied voltage conditions. Thanks to a compact and flexible design of the setup, different type of small dimension devices could be studied under external voltage conditions at various synchrotron beamlines

    Ultrafast electron and hole dynamics in novel conjugated star-shaped molecules

    No full text
    Charge dynamics in organic photovoltaic blends based on novel star-shaped molecules are studied by ultrafast visible-IR spectroscopy. Pathways of intra- and intermolecular electron and hole transfer and their recombination are identified and discussed
    • …
    corecore