43 research outputs found

    Origin and Evolution of Antibiotic Resistance: The Common Mechanisms of Emergence and Spread in Water Bodies

    Get PDF
    The environment, and especially freshwater, constitutes a reactor where the evolution and the rise of new resistances occur. In water bodies such as waste water effluents, lakes, and rivers or streams, bacteria from different sources, e.g., urban, industrial, and agricultural waste, probably selected by intensive antibiotic usage, are collected and mixed with environmental species. This may cause two effects on the development of antibiotic resistances: first, the contamination of water by antibiotics or other pollutants lead to the rise of resistances due to selection processes, for instance, of strains over-expressing broad range defensive mechanisms, such as efflux pumps. Second, since environmental species are provided with intrinsic antibiotic resistance mechanisms, the mixture with allochthonous species is likely to cause genetic exchange. In this context, the role of phages and integrons for the spread of resistance mechanisms appears significant. Allochthonous species could acquire new resistances from environmental donors and introduce the newly acquired resistance mechanisms into the clinics. This is illustrated by clinically relevant resistance mechanisms, such as the fluoroquinolones resistance genes qnr. Freshwater appears to play an important role in the emergence and in the spread of antibiotic resistances, highlighting the necessity for strategies of water quality improvement. We assume that further knowledge is needed to better understand the role of the environment as reservoir of antibiotic resistances and to elucidate the link between environmental pollution by anthropogenic pressures and emergence of antibiotic resistances. Only an integrated vision of these two aspects can provide elements to assess the risk of spread of antibiotic resistances via water bodies and suggest, in this context, solutions for this urgent health issue

    Resistance to carbapenems in animals in the absence of use

    Get PDF
    Les carbapĂ©nĂšmes, classe d’antibiotiques naturels ou semi-synthĂ©tiques de la famille des bĂȘta-lactamines sont des antibiotiques de premiĂšre importance en mĂ©decine humaine. MĂȘme si l’usage des carbapĂ©nĂšmes est interdit en mĂ©decine vĂ©tĂ©rinaire (antibiotiques critiques), des souches bactĂ©riennes rĂ©sistantes Ă  cette classe d’antibiotiques sont dĂ©crites dans le secteur animal. À partir d’exemple rĂ©cents, cette communication a pour objectif de faire un point sur la situation chez l’animal domestique en France. En particulier, l’exemple de Pseudomonas aeruginosa dans des infections cutanĂ©es chez le chien illustre comment la rĂ©sistance aux carbapĂ©nĂšmes est trĂšs probablement sĂ©lectionnĂ©e par l’usage des fluoroquinolones et/ou des aminosides (mĂ©canismes d’efflux). Au final, ces Ă©lĂ©ments constituent une occasion supplĂ©mentaire de rappeler Ă  la profession vĂ©tĂ©rinaire, l’importance de l’usage raisonnĂ© des antibiotiques en toutes circonstances.Carbapenems, a class among beta-lactams are antibiotics of crucial importance in human medicine. Even though carbapenems are not authorized in veterinary medicine, various bacteria harbouring resistance to carbapenems have been reported in the animal sector. Here, based on recent examples, we provide an update on the epidemiological situation of carbapenem resistance in domestic animals in France. Notably, the case of Pseudomonas aeruginosa in the context of external otitis in dogs highlights to what extent resistance to carbapenems may have likely been selected by the use of fluoroquinolones and/or aminoglycosides. At the end, these data stress again the importance of a rational use of antibiotics at any time in veterinary medicine

    Is Penicillin Plus Gentamicin Synergistic against Clinical Group B Streptococcus isolates?: An In vitro Study.

    Get PDF
    Group B Streptococcus (GBS) is increasingly causing invasive infections in non-pregnant adults. Elderly patients and those with comorbidities are at increased risk. On the basis of previous studies focusing on neonatal infections, penicillin plus gentamicin is recommended for infective endocarditis (IE) and periprosthetic joint infections (PJI) in adults. The purpose of this study was to investigate whether a synergism with penicillin and gentamicin is present in GBS isolates that caused IE and PJI. We used 5 GBS isolates, two clinical strains and three control strains, including one displaying high-level gentamicin resistance (HLGR). The results from the checkerboard and time-kill assays (TKAs) were compared. For TKAs, antibiotic concentrations for penicillin were 0.048 and 0.2 mg/L, and for gentamicin 4 mg/L or 12.5 mg/L. In the checkerboard assay, the median fractional inhibitory concentration indices (FICIs) of all isolates indicated indifference. TKAs for all isolates failed to demonstrate synergism with penicillin 0.048 or 0.2 mg/L, irrespective of gentamicin concentrations used. Rapid killing was seen with penicillin 0.048 mg/L plus either 4 mg/L or 12.5 mg/L gentamicin, from 2 h up to 8 h hours after antibiotic exposure. TKAs with penicillin 0.2 mg/L decreased the starting inoculum below the limit of quantification within 4-6 h, irrespective of the addition of gentamicin. Fast killing was seen with penicillin 0.2 mg/L plus 12.5 mg/L gentamicin within the first 2 h. Our in vitro results indicate that the addition of gentamicin to penicillin contributes to faster killing at low penicillin concentrations, but only within the first few hours. Twenty-four hours after antibiotic exposure, PEN alone was bactericidal and synergism was not seen

    Characterization of Neisseria gonorrhoeae isolates detected in Switzerland (1998–2012): emergence of multidrug-resistant clones less susceptible to cephalosporins

    Get PDF
    Background: The spread of Neisseria gonorrhoeae (Ng) isolates resistant to the clinically implemented antibiotics is challenging the efficacy of treatments. Unfortunately, phenotypic and molecular data regarding Ng detected in Switzerland are scarce. Methods: We compared the characteristics of Ng detected during 1998–2001 (n = 26) to those detected during 2009–2012 (n = 34). MICs were obtained with the Etest and interpreted as non-susceptible (non-S) according to EUCAST criteria. Sequence type (ST) was achieved implementing the NG-MAST. BlaTEM, ponA, penA, mtrR, penB, tet (M), gyrA, parC, mefA, ermA/B/C/F, rplD, rplV, and 23S rRNA genes were analyzed. Results: The following susceptibility results were obtained (period: % of non-S, MIC90 in mg/L): penicillin (1998–2001: 42.3%, 3; 2009–2012: 85.3%, 16), cefixime (1998–2001: 0%, ≀0.016; 2009–2012: 8.8%, 0.125), ceftriaxone (1998–2001: 0%, 0.004; 2009–2012: 0%, 0.047), ciprofloxacin (1998–2001: 7.7%, 0.006; 2009–2012: 73.5%, ≄32), azithromycin (1998–2001: 11.5%, 0.25; 2009–2012: 23.6%, 0.38), tetracycline (1998–2001: 65.4%, 12; 2009–2012: 88.2%, 24), spectinomycin (1998–2001: 0%, 12; 2009–2012: 0%, 8). The prevalence of multidrug-resistant (MDR) isolates increased from 7.7% in 1998–2001 to 70.6% in 2009–2012. International STs and genogroups (G) emerged during 2009–2012 (G1407, 29.4%; G2992, 11.7%; G225, 8.8%). These isolates possessed distinctive mechanisms of resistance (e.g., G1407: PBP1 with L421, PBP2 pattern XXXIV, GyrA with S91F and D95G, ParC with S87R, PorB with G120K and A121N, mtrR promoter with A deletion). Conclusions: The prevalence of penicillin- ciprofloxacin- and tetracycline-resistant Ng has reached dramatic levels, whereas cefixime and ceftriaxone show MICs that tend to increase during time. International MDR clones less susceptible to cephalosporins are rapidly emerging indicating that the era of untreatable gonococcal infections is close

    A Multiplex Real-Time PCR with High Resolution Melting Analysis for the Characterization of Antimicrobial Resistance in Neisseria gonorrhoeae.

    Get PDF
    Resistance to antibiotics used against Neisseria gonorrhoeae infections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detecting AMR determinants could provide valuable tools for surveillance, epidemiological studies and to inform individual case management. We developed a fast (<1.5 hrs) SYBR-green based real-time PCR method with high resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences for N. gonorrhoeae identification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully-characterized N. gonorrhoeae strains, 19 commensal Neisseria spp., and an additional panel of 193 gonococcal isolates. Results were compared with culture-based AMR determination. The assay correctly identified N. gonorrhoeae and the presence or absence of the seven AMR determinants. There was some cross-reactivity with non-gonococcal Neisseria species and the detection limit was 10(3)-10(4) gDNA copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity 100%, specificity 90%), cefixime (sensitivity 92%, specificity 94%), azithromycin and spectinomycin (both sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations generating resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens but this method can be used to screen collections of gonococcal isolates for AMR more quickly than with current culture-based AMR testing

    Pilot testing the EARS-Vet surveillance network for antibiotic resistance in bacterial pathogens from animals in the EU/EEA

    Get PDF
    IntroductionAs part of the EU Joint Action on Antimicrobial Resistance (AMR) and Healthcare-Associated Infections, an initiative has been launched to build the European AMR Surveillance network in veterinary medicine (EARS-Vet). So far, activities included mapping national systems for AMR surveillance in animal bacterial pathogens, and defining the EARS-Vet objectives, scope, and standards. Drawing on these milestones, this study aimed to pilot test EARS-Vet surveillance, namely to (i) assess available data, (ii) perform cross-country analyses, and (iii) identify potential challenges and develop recommendations to improve future data collection and analysis.MethodsEleven partners from nine EU/EEA countries participated and shared available data for the period 2016–2020, representing a total of 140,110 bacterial isolates and 1,302,389 entries (isolate-antibiotic agent combinations).ResultsCollected data were highly diverse and fragmented. Using a standardized approach and interpretation with epidemiological cut-offs, we were able to jointly analyze AMR trends of 53 combinations of animal host-bacteria–antibiotic categories of interest to EARS-Vet. This work demonstrated substantial variations of resistance levels, both among and within countries (e.g., between animal host species).DiscussionKey issues at this stage include the lack of harmonization of antimicrobial susceptibility testing methods used in European surveillance systems and veterinary diagnostic laboratories, the absence of interpretation criteria for many bacteria–antibiotic combinations of interest, and the lack of data from a lot of EU/EEA countries where little or even surveillance currently exists. Still, this pilot study provides a proof-of-concept of what EARS-Vet can achieve. Results form an important basis to shape future systematic data collection and analysis

    Résistance aux antibiotiques: la pandémie bruyante, dissémination et réservoirs

    No full text
    La rĂ©sistance bactĂ©rienne aux antibiotiques est un problĂšme majeur tant pour la santĂ© humaine que pour la santĂ© animale. Ses origines sont anciennes et son Ă©volution est inĂ©vitable. De nombreux facteurs ont Ă©tĂ© mis en Ă©vidence, qui contribuent Ă  l’évolution de ce phĂ©nomĂšne, impliquant autant le rĂ©servoir humain que les rĂ©servoirs environnemental et animal. De plus, les Ă©lĂ©ments gĂ©nĂ©tiques mobiles facilitent la propagation des gĂšnes de rĂ©sistance dans les populations bactĂ©riennes.Pendant ma thĂšse, j’ai conduit l’analyse molĂ©culaire de la rĂ©sistance aux macrolides et Ă  la tĂ©tracycline dans plusieurs espĂšces de Streptococcus, et particuliĂšrement la caractĂ©risation de l’environnement gĂ©nĂ©tique des gĂšnes appartenant aux familles mef(E), erm(B) et tet(M) dans une souche clinique de Streptococcus salivarius. Le gĂšne mef(E) Ă©tait localisĂ© sur un Ă©lĂ©ment gĂ©nĂ©tique non-conjugatif MEGA (Macrolide Efflux Genomic Assembly) et les gĂšnes erm(B) et tet(M) co-localisĂ©s sur le transposon composite Tn3872, de la famille Tn916, un Ă©lĂ©ment intĂ©gratif et conjugatif. Ce dernier et/ou les recombinases propres de l’hĂŽte ont permis la transmission de l’élĂ©ment MEGA par conjugaison Ă  une souche receveuse de Streptococcus pneumoniae. De façon trĂšs surprenante, nous avons retrouvĂ© et analysĂ© l’élĂ©ment MEGA dans des espĂšces Ă  Gram nĂ©gatif trĂšs Ă©loignĂ©es tel que Haemophilus influenzae. RĂ©cemment nous avons caractĂ©risĂ© un autre Ă©lĂ©ment gĂ©nĂ©tique qui porte des gĂšnes donnant de hauts niveaux de rĂ©sistance Ă  la gentamicine chez des souches de Streptococcus dysgalactiae sbp. equisimilis isolĂ©es de cheval. Cet Ă©lĂ©ment gĂ©nĂ©tique Ă©tait capable de transfĂ©rer chez une souche receveuse de Streptococcus agalactiae, une espĂšce pathogĂšne pour l’Homme. Toutes ces expĂ©riences suggĂšrent que la formation des Ă©lĂ©ments gĂ©nĂ©tiques composites contribue au dĂ©veloppement de la multi-rĂ©sistance dans les pathogĂšnes Ă  Gram positif et que la diffusion de ces rĂ©sistances peut se faire Ă  une trĂšs large Ă©chelle.A la suite de mon travail de thĂšse et en considĂ©rant l’importance de l’environnement dans le dĂ©veloppement et la diffusion de la rĂ©sistance aux antibiotiques, j’ai rejoint comme PostDoc le DĂ©partement d’Hydrobiologie Ă  l’UniversitĂ© de Dresde en Allemagne. Mon activitĂ© a Ă©tĂ© conduite au sein du projet IWAS (International Water Alliance Saxony) avec pour objectifs d’amĂ©liorer i) l’accĂšs Ă  l’eau potable pour la population et ii) les sources d’eau douce et la gestion des eaux usĂ©es en Ukraine, pays sĂ©lectionnĂ© dĂ» Ă  la faible qualitĂ© de ses eaux douces et parce que candidate Ă  devenir membre de l’UE, et devant donc se conformer aux critĂšres EuropĂ©ens de qualitĂ© de l’eau. Nous avons analysĂ© la qualitĂ© de l’eau de la riviĂšre Bug. Un de ses affluents majeurs est la Poltva, qui prend naissance dans L’viv, recevant ses eaux usĂ©es.Nous avons Ă©valuĂ© des paramĂštres biochimiques, physiques et microbiologiques en association avec l’analyse phĂ©notypique et molĂ©culaire de la rĂ©sistance aux antibiotiques chez des bactĂ©ries Ă  Gram nĂ©gatif. Une haute charge de pollution organique Ă©tait prĂ©sente dans la riviĂšre Bug quiprovenait de la Poltva. Nous avons trouvĂ© un profil liant une basse qualitĂ© de l’eau et la prĂ©sence de souches multi-rĂ©sistantes et avons retracĂ© la source de pollution ainsi que la dissĂ©mination de clones d’Escherichia coli multi-rĂ©sistants aux antibiotiques. Le transfert horizontal de gĂšnesde rĂ©sistance a Ă©galement Ă©tĂ© obtenu in vitro Ă  partir d’une souche isolĂ©e de la riviĂšre. Cette Ă©tude suggĂšre que les sites particuliĂšrement polluĂ©s sont une source non seulement de polluants connus mais aussi de bactĂ©ries multi-rĂ©sistantes, capable de dissĂ©miner par clonalitĂ© maisĂ©galement en transfĂ©rant horizontalement leurs gĂšnes de rĂ©sistance.A la suite de ce PostDoc, je me suis engagĂ©e Ă  l’UniversitĂ© de Berne en Suisse, dans le dĂ©partement de maladies infectieuses, dans le cadre de RadarGo, projet consistant Ă  Ă©laborer un test de diagnostic molĂ©culaire pour la dĂ©tection de Neisseria gonorrhoeae et la prĂ©diction de larĂ©sistance aux antibiotiques associĂ©e. En parallĂšle de ce projet, j’ai eu l’opportunitĂ© de mener plusieurs projets visant Ă  Ă©tudier la dissĂ©mination et l’épidĂ©miologie de bactĂ©ries pathogĂšnes humaines et leurs mĂ©canismes de rĂ©sistance aux antibiotiques. En collaboration avec l’Institut de BactĂ©riologie VĂ©tĂ©rinaire de la FacultĂ© VetSuisse, nous avons trouvĂ© des Ă©chantillons de viande vendus en Suisse contaminĂ©s par Acinetobacter baumannii. Cette bactĂ©rie pathogĂšne opportuniste pour l’Homme, connue pour sa capacitĂ© Ă  dĂ©velopper des multi-rĂ©sistances aux antibiotiques, cause des infections sĂ©vĂšres avec un choix thĂ©rapeutique limitĂ©. Le typage molĂ©culaire de ces souches a montrĂ© que les isolats retrouvĂ©s dans la viande appartenaient au mĂȘme complexe clonal que des isolats provenant de patients et prĂ©sentant des rĂ©sistancesmultiples aux antibiotiques. Ces rĂ©sultats suggĂšrent ainsi que les aliments, la viande crue en l’occurrence, peuvent servir de rĂ©servoir de pathogĂšnes humains.J’ai ensuite continuĂ© cet axe de recherche au laboratoire de l’ANSES-Lyon. Actuellement, une Ă©tudiante en thĂšse que je codirige est en charge d’un projet visant Ă  analyser les relations phylogĂ©nĂ©tiques des souches d’A. baumannii retrouvĂ©es dans la nourriture avec celles responsables d’infections chez l’Homme. Ainsi, les mĂ©canismes typiques d’adaptation au milieu hospitalier comme la capacitĂ© Ă  acquĂ©rir des gĂšnes de rĂ©sistance, Ă  rĂ©sister aux biocides et Ă  former du biofilm seront Ă©tudiĂ©s. A l’ANSES-Lyon je participe Ă  l’activitĂ© de surveillance molĂ©culaire des bactĂ©ries rĂ©sistantes aux antibiotiques, en particulier d’Acinetobacter spp., chez les animaux malades et participe Ă  la caractĂ©risation molĂ©culaire de gĂšnes de rĂ©sistance dans divers organismes. J’ai Ă©galement initiĂ© des investigations au travers de l’encadrement de deux Ă©tudiants en thĂšse pour comprendre l’impact des antibiotiques sur la composition du microbiote ,intestinale des animaux et leur capacitĂ© Ă  sĂ©lectionner des bactĂ©ries rĂ©sistantes. Ces connaissances sont importantes pour continuer Ă  connaitre les fonctions du microbiote et les protĂ©ger. Mieux connaitre les mĂ©canismes de sĂ©lection par les thĂ©rapies antibiotiques dans lemicrobiote contribuera Ă  dĂ©finir des choix thĂ©rapeutiques efficaces et limitant la propagation de gĂšnes de rĂ©sistance au sein de celui-ci et dans l’environnement

    Clonality and Antimicrobial Susceptibility of Burkholderia cepacia complex Isolates Collected from Cystic Fibrosis Patients during 1998-2013 in Bern, Switzerland.

    No full text
    For the first time, we analyzed the clonality and susceptibility of Burkholderia cepacia complex isolates (n=55) collected during 1998-2013 from 44 Swiss cystic fibrosis (CF)-patients. B. cenocepacia (n=28) and B. multivorans (n=14) were mainly of sequence type (ST) 833 and ST874, respectively; B. contaminans isolates were of ST102. Overall, the following MIC50/90s (mg/l) were obtained: piperacillin/tazobactam (≀ 4/≄ 128), ticarcillin/clavulanate (≄ 256/≄256), ceftazidime (2/≄ 32), aztreonam (16/≄ 32), meropenem (2/8), tobramycin (8/≄ 16), minocycline (≀ 1/16), levofloxacin (≀ 0.5/≄ 16), and trimethoprim/sulfamethoxazole (≀ 0.5/4). This is the first survey providing information on the clonality of Bcc detected in Switzerland. Species identification and antimicrobial susceptibility tests should always be routinely performed to adapt more targeted therapies
    corecore