148 research outputs found

    Unsupervised Discovery of Interpretable Directions in h-space of Pre-trained Diffusion Models

    Full text link
    We propose the first unsupervised and learning-based method to identify interpretable directions in h-space of pre-trained diffusion models. Our method is derived from an existing technique that operates on the GAN latent space. Specifically, we employ a shift control module that works on h-space of pre-trained diffusion models to manipulate a sample into a shifted version of itself, followed by a reconstructor to reproduce both the type and the strength of the manipulation. By jointly optimizing them, the model will spontaneously discover disentangled and interpretable directions. To prevent the discovery of meaningless and destructive directions, we employ a discriminator to maintain the fidelity of shifted sample. Due to the iterative generative process of diffusion models, our training requires a substantial amount of GPU VRAM to store numerous intermediate tensors for back-propagating gradient. To address this issue, we propose a general VRAM-efficient training algorithm based on gradient checkpointing technique to back-propagate any gradient through the whole generative process, with acceptable occupancy of VRAM and sacrifice of training efficiency. Compared with existing related works on diffusion models, our method inherently identifies global and scalable directions, without necessitating any other complicated procedures. Extensive experiments on various datasets demonstrate the effectiveness of our method

    Preparation and Photocatalytic Properties of SnO 2

    Get PDF
    SnO2 nanoparticles coated on nitrogen-doped carbon nanotubes were prepared successfully via a simple wet-chemical route. The as-obtained SnO2/CNx composites were characterized using X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2/CNx for degradation Rhodamine B under UV light irradiation was investigated. The results show that SnO2/CNx nanocomposites have a higher photocatalytic activity than pure SnO2 and SnO2/CNTs nanocomposites. This enhanced photoresponse indicates that the photoinduced electrons in the SnO2 prefer separately transferring to the CNx, which has a high degree of defects. As a consequence, the radiative recombination of the electron-hole pairs is hampered and the photocatalytic activity is significantly enhanced for the SnO2/CNx photocatalysts

    Genome-wide identification and expression profiling analysis of DIR gene family in Setaria italica

    Get PDF
    Dirigent (DIR) proteins play essential roles in regulating plant growth and development, as well as enhancing resistance to abiotic and biotic stresses. However, the whole-genome identification and expression profiling analysis of DIR gene family in millet (Setaria italica (Si)) have not been systematically understood. In this study, we conducted genome-wide identification and expression analysis of the S. italica DIR gene family, including gene structures, conserved domains, evolutionary relationship, chromosomal locations, cis-elements, duplication events, gene collinearity and expression patterns. A total of 38 SiDIR members distributed on nine chromosomes were screened and identified. SiDIR family members in the same group showed higher sequence similarity. The phylogenetic tree divided the SiDIR proteins into six subfamilies: DIR-a, DIR-b/d, DIR-c, DIR-e, DIR-f, and DIR-g. According to the tertiary structure prediction, DIR proteins (like SiDIR7/8/9) themselves may form a trimer to exert function. The result of the syntenic analysis showed that tandem duplication may play the major driving force during the evolution of SiDIRs. RNA-seq data displayed higher expression of 16 SiDIR genes in root tissues, and this implied their potential functions during root development. The results of quantitative real-time PCR (RT-qPCR) assays revealed that SiDIR genes could respond to the stress of CaCl2, CdCl, NaCl, and PEG6000. This research shed light on the functions of SiDIRs in responding to abiotic stress and demonstrated their modulational potential during root development. In addition, the membrane localization of SiDIR7/19/22 was confirmed to be consistent with the forecast. The results above will provide a foundation for further and deeper investigation of DIRs

    Iodide and chloride ions diffusivity, pore characterization and microstructures of concrete incorporating ground granulated blast furnace slag

    Get PDF
    Innovative approaches are under research to study the resistance of chloride ion penetration in concrete containing chloride ions, to minimize the impact of chloride ion penetration test errors in coastal reinforced concrete (RC), which is helpful to the design of coastal RC structures. In this study, the diffusion depth, free ion concentration and diffusion coefficient of chloride, iodide ions with different curing ages and GGBFS content were measured by the Rapid Chloride Migration Test (RCM) and Rapid Iodide Migration tests (RIM). The SEM-EDS and MIP were used to analyze the microstructures, pore size distribution and the hydrated products. The results show that the performance of GGBFS concrete against the diffusion of corrosive ions is affected by the curing age and the content of GGBFS. With the increase of GGBFS content, especially concrete with 60% GGBFS, the influence of chloride, iodide ion penetrating into concrete gradually becomes smaller. The long-age curing system is more conducive to the concrete resistance to the migration and diffusion of chloride, iodine ions. Compared with the ordinary concrete, the total porosity of concrete mixed with GGBFS is lower, the internal microstructures have fewer cracks and defects, the density is better, and the diffusion coefficient of chloride and iodide ions is also lower. In addition, using the concept of corrosive ion adjustment coefficient (conversion coefficient of diffusion between chloride ion and iodide ion) and applying the data regression analysis (DRA), it is found that there is a good quadratic parabolic function relationship between the GGBFS content and the ions adjustment coefficient

    Diffraction-Free Bloch Surface Waves

    Full text link
    In this letter, we demonstrate a novel diffraction-free Bloch surface wave (DF-BSW) sustained on all-dielectric multilayers that does not diffract after being passed through three obstacles or across a single mode fiber. It can propagate in a straight line for distances longer than 110 {\mu}m at a wavelength of 633 nm and could be applied as an in-plane optical virtual probe, both in air and in an aqueous environment. The ability to be used in water, its long diffraction-free distance, and its tolerance to multiple obstacles make this DF-BSW ideal for certain applications in areas such as the biological sciences, where many measurements are made on glass surfaces or for which an aqueous environment is required, and for high-speed interconnections between chips, where low loss is necessary. Specifically, the DF-BSW on the dielectric multilayer can be used to develop novel flow cytometry that is based on the surface wave, but not the free space beam, to detect the surface-bound targets

    Synthesis and Properties of Red Mud-Based Nanoferrite Clinker

    Get PDF
    Red mud, an industrial waste obtained from alumina plants, is usually discharged into marine or disposed into a landfill polluting the surrounding water, atmosphere, and soil. Thus, disposal of red mud is an environmental concern and it should be recycled in an effective way. Since red mud consists of iron- and aluminum-rich phases, it can potentially be processed into cementitious material and can be used for a construction purpose. This research investigated the synthesis of nanoferrite (NF) clinker by using red mud as a raw material through chemical combustion technology for potential use in cement-based composite. Before the synthesis of NF, red mud was characterized by using XRF, XRD, and SEM techniques. From characterization results, the stoichiometric ratio of raw materials was calculated and experimentally optimized. The sample was then tested at various temperatures (815, 900, 1000, and 1100 degrees C) to find the optimum synthesis temperature. Finally, the hydraulic activity of NF was verified and the contribution to mechanical properties was determined by replacing cement with NF at various substitution levels (0, 5, 10, and 20wt%). Test results showed that the optimum condition for the synthesis of NF was found when the ratio of CaCO3/red mud was 1.5 and the sintering temperature was 815 degrees C. The synthesized NF had an average diameter of 300nm, and the main composition was brownmillerite (C(4)AF) with distinct hydraulic reaction. When NF was used as a substitute of Portland cement in mortar, the flexural strength with a 5% replacement level improved by 15%. Therefore, it can be concluded that the synthesis of NF provides an alternative approach to recycle red mud and could significantly help in reducing environmental pollution

    Enhancement of Photocatalytic Activity on TiO 2

    Get PDF
    TiO2-nitrogen-doped carbon nanotubes (TiO2-CNx) nanocomposites are successfully synthesized via a facile hydrothermal method. The prepared photocatalysts were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric and differential scanning calorimetry analyses (TGA-DSC). The results show that the TiO2 nanoparticles with a narrow size of 7 nm are uniformly deposited on CNx. The photocatalytic activity of the nanocomposite was studied using methyl orange (MO) as a model organic pollutant. The experimental results revealed that the strong linkage between the CNx and TiO2 played a significant role in improving photocatalytic activity. However, the mechanical process for CNx and TiO2 mixtures showed lower activity than neat TiO2. Moreover, TiO2-CNx nanocomposites exhibit much higher photocatalytic activity than that of neat TiO2 and TiO2-CNTs nanocomposites. The improved photodegradation performances are attributed to the suppressed recombination of electrons and holes caused by the effective transfer of photogenerated electrons from TiO2 to CNx
    corecore