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TiO
2
-nitrogen-doped carbon nanotubes (TiO

2
-CNx) nanocomposites are successfully synthesized via a facile hydrothermal

method.The prepared photocatalysts were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy
(SEM), transmission electron microscopy (TEM), and thermogravimetric and differential scanning calorimetry analyses (TGA-
DSC).The results show that the TiO

2
nanoparticles with a narrow size of 7 nm are uniformly deposited on CNx.The photocatalytic

activity of the nanocomposite was studied using methyl orange (MO) as a model organic pollutant. The experimental results
revealed that the strong linkage between the CNx and TiO

2
played a significant role in improving photocatalytic activity.

However, the mechanical process for CNx and TiO
2
mixtures showed lower activity than neat TiO

2
. Moreover, TiO

2
-CNx

nanocomposites exhibit much higher photocatalytic activity than that of neat TiO
2
and TiO

2
-CNTs nanocomposites.The improved

photodegradation performances are attributed to the suppressed recombination of electrons and holes caused by the effective
transfer of photogenerated electrons from TiO

2
to CNx.

1. Introduction

Photocatalysis has been widely applied as a technique of
destruction of organic pollutants due to its high performance,
low cost, nontoxicity, stability, and availability [1, 2]. Titanium
dioxide (TiO

2
), a semiconductor with direct bandgap of

3.2 eV, has excellent photocatalytic properties and chemical
stability, and it is an environmentally friendly and abundant
substance [3, 4]. However, a major limitation to achieve high
photocatalytic efficiency is the quick recombination of photo-
generated charge carries [5]. Recombination has faster kinet-
ics than surface redox reactions and greatly reduces the
quantum efficiency of photocatalysis. Therefore, currently a
particularly attractive option is to design and develop hybrid
materials based on TiO

2
to solve this problem.

Recently, carbon-based nanomaterials, such as carbon
nanotubes (CNTs) and graphene, have been reported as
the hybrid component to be incorporated into TiO

2
due to

their unique electrical properties, superior chemical stability,

and good conductivity. The common approaches to synthe-
size TiO

2
-CNTs composites include sol-gel method [6, 7],

chemical vapor deposition (CVD) [8, 9], and electrospinning
[10]. Various structural forms of titania-carbon nanotubes
photocatalysts have been prepared, such as TiO

2
nanopar-

ticles on CNTs [11], TiO
2
layer coating on aligned CNTs

arrays [12], CNTs incorporating into the TiO
2
film [13], TiO

2

layer coating on CNTs [14], and low loading amounts of
CNTs embedded inside mesoporous TiO

2
aggregates [15].

Cong et al. [16] have prepared uniform and fine well-dis-
persed carbon-doped TiO

2
coating on multiwalled carbon

nanotubes by oxidation of titanium-carbide-(TiC-) coated
CNTs, and the prepared carbon-dopedTiO

2
coating onCNTs

shows a higher visible light photocatalytic activity.
However, to fabricate the TiO

2
-CNTs composites, the

CNTs required a pretreatment process to modify their inert
surface nature via harsh processes for activation by refluxing
in concentrated acids, which destroys the 𝜋 conjugation and
reduces the conductance of the CNTs base [17]. Unfavorably,
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the harsh process would risk CNTs to some damages in their
inherent properties. To bypass the drawbacks suffered by
CNTs, employing CNx without requiring any pretreatment
to composite with the functional materials directly is a
promisingmethod because the nitrogen atoms on the surface
of the CNTs modify the adsorption strength of the nan-
otubes towards foreign elements. Moreover, nitrogen atoms
in the framework of CNx will form chemically active points
which are available for metal or metallic oxide nanoparticles
anchoring. Ghosh and coworkers [17] prepared ZnO/CNx
composites via a simple wet-chemical method and stud-
ied their field emission performance. CNx decorated with
CeO
2
and SnO

2
nanoparticles showed greater activity and

sensitivity than the conventional CNT-based composites for
NO electrooxidation [18].

In this work, according to the unique properties of
CNx, we have synthesized TiO

2
-CNx nanocomposites with

different weight ratios via a facile hydrothermal method.The
resulting materials were well characterized for their physic-
ochemical properties, structural features, as well as potential
applications to the photodegradation of MO.

2. Experimental

2.1. Synthesis of TiO
2
-CNx. Following the procedures

reported previously [19], CNx was synthesized using diethyl-
amine as the carbon and nitrogen source. The purification
process for CNx was as follows: CNx was firstly washed three
times by 20% HF solution, then soaked in 20% HF solution
overnight, gathered by filtration, and finally dried at 80∘C for
2 h.

TiO
2
-CNx nanocomposites were prepared using a

hydrothermal synthesis method. CNx was added to provide a
weight ratio of TiO

2
over CNx in the range from 5% to 20%,

indicated with X wt% TiO
2
-CNx. CNx was initially dispersed

into a 30mL solution containing 2.7mL water and 27.3mL
isopropanol, and the suspension was treated by sonication
overnight. Then the titanium precursor solution, 3.41mL
titanium isopropoxide in 18mL isopropanol was added
dropwise into the CNx suspension under vigorous stirring.
The mixture was left at room temperature under stirring for
2 h to complete the hydrolysis reaction. The mixed solution
was then transferred into a teflon-lined stainless-steel
autoclave (50mL capacity). The autoclave was maintained at
140∘C for 24 h and then cooled down to room temperature.
The resulting solid was washed with ethanol and deionized
water, gathered by filtration, and subsequently dried at 80∘C
overnight. The TiO

2
-CNx solids were ground into powder

and stored in a dessicator for further usage. For comparison,
TiO
2
-CNTs composites were synthesized using the similar

procedures besides CNTs pretreated in concentrated HNO
3

at 140∘C for 14 h, and neat TiO
2
sample was synthesized

without adding CNTs.

2.2. Characterization. The bare CNx and the composites
were characterized by a wide range of analytical techniques.
The degree of crystallinity of the TiO

2
-CNx composites was

characterized by powder X-ray diffraction (XRD). The XRD
patterns with diffraction intensity versus 2𝜃 were recorded
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Figure 1: XRD patterns of bare CNx (a) and TiO
2
-CNx composites

with different weight ratio of TiO
2
over CNx 5% (b) and 20% (c).

in a Bruker D8 ADVANCE instrument with Cu-Ka radiation
(𝜆 = 1.5418 Å) from 20∘ to 70∘ at a scanning speed of 2∘/min.
X-ray tube voltage and current were set at 40 kV and 40mA,
respectively. Thermogravimetric and differential scanning
calorimetry analyses (TGA-DSC) were performed by a Net-
zsch STA-449C analyzer with a heating rate of 10∘C/min and
an air flow rate of 100mL/min. Scanning electronmicroscopy
(SEM)was carried out onHitachi S-4800with an acceleration
voltage of 5 kV.Transmission electronmicroscopy (TEM)was
carried out on JEOL-JEM-1005 at 200 kV. The specimens for
SEM and TEM imaging were prepared by suspending solid
samples in ethanol with 15min ultrasonication and placing
a drop of this mixture on a 3.05mm diameter copper mesh,
which was then dried in air.

2.3. Photodegradation ofMO. Thephotoreactor was designed
with a cylindrical quartz cell configuration and an internal
light source surrounded by a quartz jacket, where MO aque-
ous solution completely surrounded the light source. An
external cycled cooling flowofwater was used tomaintain the
reaction temperature constant.

Photocatalytic experiments were carried out by adding
0.01 g TiO

2
or TiO

2
-CNTs composites or TiO

2
-CNx compos-

ites into photoreactor containing 30mLMO solution with an
initial concentration of 15mg/L. The mixture was stirred for
30min in the dark to favor the adsorption equilibration, and
then the stirred suspensions were illuminated with a 300W
high-pressure mercury lamp 10 cm high over the solution.
The solution was stirred continuously during the photocat-
alytic reaction. The concentration of MO was analyzed by
recording the absorption band maximum at 464 nm in the
absorption spectra, using Shimadzu UV-2550 spectropho-
tometer.

3. Results and Discussion

TheXRD patterns of the bare CNx and TiO
2
-CNx nanocom-

posites are shown in Figure 1. The main peaks at 26.1∘ and
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Figure 2: SEM images of bare CNx (a), TiO
2
-CNx composites with different weight ratio of TiO

2
over CNx 5% (b), 10% (c), and 20% (d).

42.6∘ corresponded to the (002) and (100) reflections of
CNx, respectively, (JCPDS 41-1487), which indicated that
the employed CNx was highly graphitized (Figure 1(a)). It is
obvious that the TiO

2
-CNx nanocomposites show the same

characteristic diffraction peaks referred to as anatase TiO
2

(JCPDS number 21-1272). The characteristic peaks at 2𝜃
of 25.3, 37.8, 48.0, 53.9, 55.1, and 62.7∘ can be indexed to
(101), (004), (200), (105), (211), and (204) crystal planes of
anatase TiO

2
, respectively. Notably, no typical diffraction

peaks belonging to the separate CNx are observed in the
TiO
2
-CNxnanocomposites.The reason can be ascribed to the

fact that themain characteristic peak of CNx at 26.1∘might be
shielded by the main peak of anatase TiO

2
at 25.3∘.

Figures 2 and 3 show the SEM and TEM images of bare
CNx and TiO

2
-CNx composites. CNx with relatively outer

diameter (30∼60 nm)was obtained, and the nanomaterial has
a bamboo-like morphology with a clear, smooth surface. It
is clearly seen that, for TiO

2
-CNx nanocomposites, the TiO

2

nanoparticles are almost uniformly deposited on the surface
of CNx. The more weight ratio of TiO

2
over CNx, the more

visible nanoparticles observed (Figures 2(b), 2(c), and 2(d)).
Figure 3(b) is TEM image of an individual CNx fully coated
with TiO

2
nanoparticles. The bamboo-like morphology of

CNx can be also clearly observed, and its surface is entirely
and homogeneously covered by TiO

2
nanoparticles. There

are no clear boundary and vacant space between the TiO
2

coating and CNx substrate. The nanoparticles covered on
the CNx show clear crystal lattice fringes (Figure 3(c)). The
intimate contact between CNx and TiO

2
favors the formation

of junctions between the two materials, as a result, being
helpful for improving the charge separation and thus the
photocatalytic activity. As estimated from the TEM images,
the size of TiO

2
nanoparticles is about 7 nm. EDX spectrum

presented in Figure 3(d) further determined the existence of
Ti and O atoms.

TGA-DSC analysis was carried out to estimate the carbon
nanotube content of the nanocomposite.The results of weight
loss and heat flow as a function of temperature for TiO

2
-CNx

nanocomposites are shown in Figure 4. For the 5wt% and
15wt%TiO

2
-CNx nanocomposites, the weight loss due to the

combustion of the CNx was 93.5% and 83.8%, respectively,
indicating that TiO

2
/CNx ratios estimated from the synthesis

precursors of the nanocomposites were in close agreement
with the results obtained fromTGA-DSC analyses.Therefore,
negligible losses of CNx occurred during the composite
preparation procedure. The combustion point of CNx in
the 15 wt% TiO

2
-CNx composite was found to be 544.3∘C,

whereas CNx in 5wt% TiO
2
-CNx composite could not be

combusted until approximately 647.6∘C. The combustion
temperature shift between different TiO

2
/CNx ratios may

be ascribed to the following two reasons: (i) more amount
of TiO

2
grafted on the sidewall of CNx may provide more

oxygen required by the combustion of CNx and (ii) more
amount of TiO

2
restrains the heat transfer creating localized

hot spots, facilitating the oxidation of carbon.
Figure 5 shows the results of the decomposition of MO

under irradiation, in the presence of neat TiO
2
, TiO

2
-

CNTs, and TiO
2
-CNx nanocomposites with different weight
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Figure 3: TEM images of bare CNx (a), low-magnification TEM image (b), high-magnification TEM image (c), and EDS spectrum of 10wt%
TiO
2
-CNx composites (d).
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Figure 4: TG and DSC curves of TiO
2
-CNx composites with different weight ratio of TiO

2
over CNx 5% (a) and 15% (b).
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2
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ratios. Control experiments showed that UV irradiation with
no catalyst and catalyst (composite or bare CNx) without
irradiation could not degrade MO dye solutions. When TiO

2

photocatalyst is used, the degradation efficiency is calculated
to be 82.4% at 110min. When CNTs is introduced, the
degradation efficiency is increased to 91.1% for 10wt% TiO

2
-

CNTs composites and reaches the maximum value of 99.6%
for 20wt% TiO

2
-CNx composites at 110min. It is noteworthy

that TiO
2
-CNx composites show superior activity to TiO

2
-

CNTs composites with the same TiO
2
weight ratio. With

the reaction time at 110min, the MO degradation efficiency
of 10 wt% TiO

2
-CNTs catalysts is about 91.1%. However, the
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Figure 7: Schematic diagram showing band configuration and
electron-hole separation at interface of TiO

2
-CNx nanocomposites

under UV irradiation (CB: the bottom of conduction band, VB: the
top of valence band).

value of 10 wt% TiO
2
-CNx is 98.2%. Hence, TiO

2
-CNx is an

excellent photocatalyst in our experiment.
It has been reported that high adsorption capacities

of photocatalysts can lead to the rapid diffusion of MO
molecules from solution to the surface of photocatalysts
and thus improve photocatalytic performances [20]. Figure 6
shows the remaining fraction of MO (C/C

0
) in solution

during adsorption for 60min in dark by neat TiO
2
, TiO
2
-

CNTs composites and TiO
2
-CNx composites. It is obvious

that three photocatalysts exhibited adsorption capacities for
MO molecules in the following order: 10 wt% TiO

2
-CNx >

10 wt% TiO
2
-CNTs > TiO

2.
The improved adsorption capac-

ity of 10 wt% TiO
2
-CNx is attributed to its larger specific

surface area of 150.25m2/g than these of 10 wt% TiO
2
-CNTs

(128.26m2/g) and neat TiO
2
(85.49m2/g). It is noteworthy

that the concentration of MO molecules shows negligible
change after 30min, indicating the adsorption equilibration.
So the adsorption is not themain reason for the improvement
of photocatalytic activity in our experiment because the mix-
ture was stirred for 30min in advance. The enhancement of
the photocatalytic performance should be mainly ascribed to
the promotion of separation rate of photogenerated electron
and hole by the formation of heterostructure, as shown in
Figure 7.

Under UV irradiation, the valence band electrons of TiO
2

can be excited to its conduction bands, giving rise to high-
energy electron-hole pairs. Compared with CNTs, CNx has
a high degree of defects introduced by nitrogen doping [21].
When the electrons generated by TiO

2
transfer into CNx,

it could be used as a larger capacity container of electron
in comparison with the usual CNTs. So the separation
efficiency of electron-hole pairs improved, leading to the
dramatically enhanced photoactivity. Moreover, compared to
carbon, nitrogen has an extra electron, and from an electronic
point of view it is natural to expect an excess of donors in
the N-rich areas of the CNTs upon doping [22, 23]. That
is to say, impurities significantly enhanced the CNx metal-
lic/conductive character [24]. Hence, the rapid transferring of
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electron enhanced separation rate of photogenerated electron
and hole.

In order to further explore the effect of the interphase
linkage, amechanicalmixture ofCNx andTiO

2
was prepared.

The composition of the mixture was prepared with the
same ratio as that in 10wt% TiO

2
-CNx nanocomposites.

The photocatalytic activity of the mixture photocatalyst was
76.4% at 110min, much lower than that of 10 wt% TiO

2
-

CNx nanocomposites (98.2%). The low activity is ascribed
to CNx in the photocatalyst not being effective in trapping
electrons. This lack of effectiveness prevents a decrease in
recombination rate. In the mechanical mixture, it is possible
that the mechanical mixture process cannot form a strong
interphase between the TiO

2
and the CNx. In contrast, a

strong interphase was formed in TiO
2
-CNx composites, as

evidenced by the previous analysis. Therefore, TiO
2
-CNx

composites showed high activity. Moreover, CNx was almost
inactive during MO degradation by UV light irradiation.
Once CNx became incapable of bonding strongly with TiO

2
,

they simply occupied the active sites and scattered the
incident light. Therefore, the hydrothermal synthesis proce-
dure is a critical factor in forming high-activity TiO

2
-CNx

nanocomposites photocatalysts.

4. Conclusions

In this work, we have synthesized uniformly dispersed TiO
2

on the surface of CNx via a hydrothermal synthesis method.
The nanocomposites showed excellent photocatalytic activity
compared with neat TiO

2
and TiO

2
-CNTs. The rapid trans-

ferring of electron and high separation efficiency of electron-
hole pairs lead to the dramatically enhanced photocatalytic
activity. According to the activity and characterization results,
the interphase linkage of TiO

2
and CNx is a critical factor

for promoting photocatalysis. A mechanical mixture cannot
provide strong binding between TiO

2
andCNx, thus showing

decreased activity.
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