14 research outputs found

    Qualcomm v. Broadcom: Implications for Electronic Discovery

    Get PDF
    Electronic discovery has been the source of difficult challenges for courts, lawyers, and litigants from the beginning. The methods, document formats, and scope of electronic discovery have all contributed to the difficulties encountered. The seminal case in the United States that underscores the nature of the difficulties and challenges facing lawyers and courts in electronic discovery is Qualcomm v. Broadcom. While the case has been cited as an example of the ethical issues facing lawyers who do not follow the rules of discovery, the lessons go well beyond ethical issues. All major common law countries, including Australia, New Zealand, United Kingdom, Canada, South Africa, and the United States have recently updated their rules of civil procedure regarding the electronic discovery process in order to facilitate the electronic discovery process. The authors offer five key lessons to be drawn from this case including the importance of efficiently managing electronic discovery, the importance of the meet-and-confer discovery conference, the importance of retaining an electronic discovery expert, the importance of being proactive in the discovery process, and recognizing the limitations of relying entirely on key word searches

    Measurement of the rate of nu_e + d --> p + p + e^- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory

    Get PDF
    Solar neutrinos from the decay of 8^8B have been detected at the Sudbury Neutrino Observatory (SNO) via the charged current (CC) reaction on deuterium and by the elastic scattering (ES) of electrons. The CC reaction is sensitive exclusively to nu_e's, while the ES reaction also has a small sensitivity to nu_mu's and nu_tau's. The flux of nu_e's from ^8B decay measured by the CC reaction rate is \phi^CC(nu_e) = 1.75 +/- 0.07 (stat)+0.12/-0.11 (sys.) +/- 0.05(theor) x 10^6 /cm^2 s. Assuming no flavor transformation, the flux inferred from the ES reaction rate is \phi^ES(nu_x) = 2.39+/-0.34 (stat.)+0.16}/-0.14 (sys) x 10^6 /cm^2 s. Comparison of \phi^CC(nu_e) to the Super-Kamiokande Collaboration's precision value of \phi^ES(\nu_x) yields a 3.3 sigma difference, providing evidence that there is a non-electron flavor active neutrino component in the solar flux. The total flux of active ^8B neutrinos is thus determined to be 5.44 +/-0.99 x 10^6/cm^2 s, in close agreement with the predictions of solar models.Comment: 6 pages (LaTex), 3 figures, submitted to Phys. Rev. Letter

    Measurement of the νe\nu_e and Total 8^{8}B Solar Neutrino Fluxes with the Sudbury Neutrino Observatory Phase I Data Set

    Get PDF
    This article provides the complete description of results from the Phase I data set of the Sudbury Neutrino Observatory (SNO). The Phase I data set is based on a 0.65 kt-year exposure of heavy water to the solar 8^8B neutrino flux. Included here are details of the SNO physics and detector model, evaluations of systematic uncertainties, and estimates of backgrounds. Also discussed are SNO's approach to statistical extraction of the signals from the three neutrino reactions (charged current, neutral current, and elastic scattering) and the results of a search for a day-night asymmetry in the νe\nu_e flux. Under the assumption that the 8^8B spectrum is undistorted, the measurements from this phase yield a solar νe\nu_e flux of ϕ(νe)=1.760.05+0.05(stat.)0.09+0.09(syst.)×106\phi(\nu_e) = 1.76^{+0.05}_{-0.05}{(stat.)}^{+0.09}_{-0.09} {(syst.)} \times 10^{6} cm2^{-2} s1^{-1}, and a non-νe\nu_e component ϕ(νμτ)=3.410.45+0.45(stat.)0.45+0.48(syst.)×106\phi(\nu_{\mu\tau}) = 3.41^{+0.45}_{-0.45}{(stat.)}^{+0.48}_{-0.45} {(syst.)} \times 10^{6} cm2^{-2} s1^{-1}. The sum of these components provides a total flux in excellent agreement with the predictions of Standard Solar Models. The day-night asymmetry in the νe\nu_e flux is found to be Ae=7.0±4.9(stat.)1.2+1.3A_{e} = 7.0 \pm 4.9 \mathrm{(stat.)^{+1.3}_{-1.2}}% \mathrm{(sys.)}, when the asymmetry in the total flux is constrained to be zero.Comment: Complete (archival) version of SNO Phase I results. 78 pages, 46 figures, 34 table

    Direct evidence for neutrino flavor transformation from neutral-current interactions in SNO

    Get PDF
    Observations of neutral current neutrino interactions on deuterium in the Sudbury Neutrino Observatory are reported. Using the neutral current, elastic scattering, and charged current reactions and assuming the standard 8B shape, the electron-neutrino component of the 8B solar flux is 1.76 +/-0.05(stat.)+/-0.09(syst.) x10^6/(cm^2 s), for a kinetic energy threshold of 5 MeV. The non-electron neutrino component is 3.41+/-0.45(stat.)+0.48,-0.45(syst.) x10^6/(cm^2 s), 5.3 standard deviations greater than zero, providing strong evidence for solar electron neutrino flavor transformation. The total flux measured with the NC reaction is 5.09 +0.44,-0.43(stat.)+0.46,-0.43(syst.)x10^6/(cm^2 s), consistent with solar models.Comment: 6 pages, 3 figures, correction to author list and minor typographical corrections to reference
    corecore