33 research outputs found

    Metatranscriptomic Signatures Associated With Phytoplankton Regime Shift From Diatom Dominance to a Dinoflagellate Bloom

    Get PDF
    Diatoms and dinoflagellates dominate coastal marine phytoplankton communities as major players of marine biogeochemical cycles and their seasonal succession often leads to harmful algal blooms (HABs). What regulates their respective dominances and the development of the HABs remains elusive. Here we conducted time-sequential metatranscriptomic profiling on a natural assemblage that evolved from diatom dominance to a dinoflagellate bloom to interrogate the underlying major metabolic and ecological drivers. Data reveals similarity between diatoms and dinoflagellates in exhibiting high capacities of energy production, nutrient acquisition, and stress protection in their respective dominance stages. The diatom-to-dinoflagellate succession coincided with an increase in turbidity and sharp declines in silicate and phosphate availability, concomitant with the transcriptomic shift from expression of silicate uptake and urea utilization genes in diatoms to that of genes for light harvesting, diversified phosphorus acquisition and autophagy-based internal nutrient recycling in dinoflagellates. Furthermore, the diatom-dominant community featured strong potential to carbohydrate metabolism and a strikingly high expression of trypsin potentially promoting frustule building. In contrast, the dinoflagellate bloom featured elevated expression of xanthorhodopsin, and antimicrobial defensin genes, indicating potential importance of energy harnessing and microbial defense in bloom development. This study sheds light on mechanisms potentially governing diatom- and dinoflagellate-dominance and regulating bloom development in the natural environment and raises new questions to be addressed in future studies

    Association between triglyceride glucose index and breast cancer in 142,184 Chinese adults: findings from the REACTION study

    Get PDF
    BackgroundThe triglyceride glucose (TyG) index has been associated with an increased risk in breast cancer. However, this association remains unclear among the Chinese population. This study aimed to investigate whether the TyG index is associated with the risk of prevalent breast cancer in Chinese women.MethodsThis cross-sectional study included 142,184 women from the REACTION (Risk Evaluation of Cancers in Chinese Diabetic Individuals: A Longitudinal) Study, which recruited adults aged 40 years or older from 25 centers across mainland China between 2011 and 2012. The TyG index was calculated according to the formula: Ln (fasting triglycerides [mg/dL] × fasting glucose [mg/dL]/2). Multivariable-adjusted logistic regression models were used to evaluate odds ratios (ORs) and 95% confidence intervals (CIs) regarding the associations between the TyG index and breast cancer.ResultsMultivariable-adjusted logistic regression analysis showed that compared with the lowest quartile of the TyG index, the highest quartile of the TyG index was significantly associated with an increased risk of prevalent breast cancer, with an OR (95% CI) of 1.61 (1.19–2.17). In the stratified analysis, the association of each 1 SD increase in the TyG index with risk of prevalent breast cancer was more dominant in individuals with menarche at age 13–17, those who were postmenopausal, those with a history of breastfeeding, and those who had two to four children, with the ORs (95% CIs) of 1.35 (1.09–1.68), 1.27 (1.05–1.54), 1.26 (1.05–1.52), and 1.32 (1.08–1.62), respectively. Moreover, among those without discernible insulin resistance (homeostatic model assessment-insulin resistance [HOMA-IR] ≥2.5), hyperglycemia and dyslipidemia, each 1 SD increase in the TyG index was associated with a 1.36-fold increase in breast cancer risk, with an OR (95% CI) of 2.36 (1.44–3.87).ConclusionThe TyG index is significantly associated with the prevalent breast cancer risk among middle-aged and elderly Chinese women

    Speed observation of linear induction motor based on extended Kalman filter

    No full text
    In order to solve the problem of lacking velocity feedback information in the velocity closed-loop control system for linear induction motors (LIM) after cancelling the velocity sensor, a velocity observer based on the extended Kalman filtering algorithm has been implemented, considering the end edge effect of LIM. Firstly, based on the mathematical model of three-phase linear induction motor considering edge effect, an extended Kalman filter observer with appropriate gain and covariance update matrix is derived. Based on the vector control system of LIM, the speed parameters identified by the observer are fed back to the speed closed-loop system. Then, the vector control system model of linear induction motor with speed observer is built in Simulink, and the identification speed of observer is compared with the actual speed of motor. Finally, the results show that the closed-loop control using the identification speed can ensure the stable operation of the system. Under three kinds of loads, the error between the predicted speed and the actual speed of the observer is form 0.51% to 2.34%. The various dynamic performance of the system reveals that the LIM vector control system based on the extended Kalman filter observer increases prediction velocity error and decreases thrust error with increasing load. However, the magnetic flux amplitude error slightly increases. Therefore, considering the end-edge effect, the observer based on the extended Kalman filter can replace the velocity sensor to achieve three-phase LIM control under both unloaded and loaded conditions

    Numerical simulation of vortex instabilities in the wake of a preswirl pumpjet propulsor

    Get PDF
    A numerical analysis based on detached eddy simulations is conducted to investigate vortex instabilities in the wake of a preswirl pumpjet propulsor. Three models are established to separate the roles that the rotor, stator, and duct play in the vortex structure of the pumpjet propulsor. In this paper, only the vortex structure of the rotor is considered. The results show that the vortex system of the rotor is mainly composed of the tip vortices, a hub vortex, the trailing tip vortices, and the trailing root vortices. The trailing tip vortices are generated by the premature shedding of the tip vortices in the rotor model compared with a normal single propeller. The existence of trailing root vortices increases the stability of the hub vortex. Furthermore, a unique multi-inductance instability mode of the tip vortex, called the "overlap–forward" phenomenon, is found for low values of the advance coefficient J. It is found that the instability of the tip vortex depends not only on the spiral-to-spiral distance but also on the highest-efficiency point of the propeller. The instability inception point of the tip vortex moves farther downstream with increasing J, whereas when J is greater than the highest-efficiency point of the propeller, the stable length of the tip vortices drops sharply. The energy transfer process from blade harmonics to shaft harmonics of the tip vortices depends on J and is related to the spatial evolution of the tip vortices

    Thalidomide-induced serious RR interval prolongation (longest interval >5.0 s) in multiple myeloma patient with rectal cancer: A case report

    No full text
    Primary secondary tumor increased recently with the use of immunomodulatory drugs in patients with multiple myeloma (MM). However, MM with prior diagnosis of primary secondary tumor is relatively rare. In this study, we reported an MM patient with prior diagnosis of rectal cancer. In brief, an 85-year-old man was first diagnosed with rectal cancer. Given the age, heart failure and small-cell hypochromic anemia (hemoglobin level: 54 g/L), rectal cancer resection was not advised and symptomatic treatments were performed (including sufficient iron supplementation). Eight months later, the patient was diagnosed with MM due to worsening anemia. Anemia and heart failure were corrected after three cycles of treatment with thalidomide, dexamethasone and capecitabine. Radical resection of rectal carcinoma (Hartmann) was finally performed due to acute abdominal distension. Meanwhile, RR interval prolongation (longest interval >5.0 s) and atrial fibrillation occurred in the fifth cycle treatment. One month after discontinuation of thalidomide, RR interval returned to normal range, while atrial fibrillation developed into persistent atrial fibrillation

    Multiscale Synergistic Gecko-Inspired Adhesive for Stable Adhesion under Varying Preload and Surface Roughness

    No full text
    Inspired by geckos, fibrillar microstructures hold great promise as controllable and reversible adhesives in the engineering field. However, enhancing the adhesion strength and stability of gecko-inspired adhesives (GIAs) under complex real-world contact conditions, such as rough surfaces and varying force fields, is crucial for its commercialization, yet further research is lacking. Here, we propose a hierarchically designed GIA, which features a silicone foam (SF) backing layer and a film-terminated fibrillar microstructure under a subtle multiscale design. This structure has been proven to have a “multiscale synergistic effect”, allowing the material to maintain strong and stable adhesion to surfaces with changing normal pressures and roughness. Specifically, under a high load, the adhesive strength is 2 times more than that of conventional GIA, and it is 1.5 times stronger on rough surfaces compared to conventional GIA. Under high pressure and high surface roughness simultaneously, the adhesive strength is 3.3 times higher compared to conventional GIA. Our research demonstrates that the synergistic effect of multiscale biomimetic adhesion structures is highly effective in enhancing the adhesive strength of GIA under some harsh contact conditions

    Multiscale Synergistic Gecko-Inspired Adhesive for Stable Adhesion under Varying Preload and Surface Roughness

    No full text
    Inspired by geckos, fibrillar microstructures hold great promise as controllable and reversible adhesives in the engineering field. However, enhancing the adhesion strength and stability of gecko-inspired adhesives (GIAs) under complex real-world contact conditions, such as rough surfaces and varying force fields, is crucial for its commercialization, yet further research is lacking. Here, we propose a hierarchically designed GIA, which features a silicone foam (SF) backing layer and a film-terminated fibrillar microstructure under a subtle multiscale design. This structure has been proven to have a “multiscale synergistic effect”, allowing the material to maintain strong and stable adhesion to surfaces with changing normal pressures and roughness. Specifically, under a high load, the adhesive strength is 2 times more than that of conventional GIA, and it is 1.5 times stronger on rough surfaces compared to conventional GIA. Under high pressure and high surface roughness simultaneously, the adhesive strength is 3.3 times higher compared to conventional GIA. Our research demonstrates that the synergistic effect of multiscale biomimetic adhesion structures is highly effective in enhancing the adhesive strength of GIA under some harsh contact conditions

    Multiscale Synergistic Gecko-Inspired Adhesive for Stable Adhesion under Varying Preload and Surface Roughness

    No full text
    Inspired by geckos, fibrillar microstructures hold great promise as controllable and reversible adhesives in the engineering field. However, enhancing the adhesion strength and stability of gecko-inspired adhesives (GIAs) under complex real-world contact conditions, such as rough surfaces and varying force fields, is crucial for its commercialization, yet further research is lacking. Here, we propose a hierarchically designed GIA, which features a silicone foam (SF) backing layer and a film-terminated fibrillar microstructure under a subtle multiscale design. This structure has been proven to have a “multiscale synergistic effect”, allowing the material to maintain strong and stable adhesion to surfaces with changing normal pressures and roughness. Specifically, under a high load, the adhesive strength is 2 times more than that of conventional GIA, and it is 1.5 times stronger on rough surfaces compared to conventional GIA. Under high pressure and high surface roughness simultaneously, the adhesive strength is 3.3 times higher compared to conventional GIA. Our research demonstrates that the synergistic effect of multiscale biomimetic adhesion structures is highly effective in enhancing the adhesive strength of GIA under some harsh contact conditions

    Surface-Electron Coupling for Efficient Hydrogen Evolution

    No full text
    Maximizing the activity of materials towards the alkaline hydrogen evolution reaction while maintaining their structural stability under realistic working conditions remains an area of active research. Herein, we report the first controllable surface modification of graphene(G)/V8C7 heterostructures by nitrogen. Because the introduced N atoms couple electronically with V atoms, the V sites can reduce the energy barrier for water adsorption and dissociation. Investigation of the multi-regional synergistic catalysis on N-modified G/V8C7 by experimental observations and density-functional-theory calculations reveals that the increase of electron density on the epitaxial graphene enable it to become favorable for H* adsorption and the subsequent reaction with another H2O molecule. This work extends the range of surface-engineering approaches to optimize the intrinsic properties of materials and could be generalized to the surface modification of other transition-metal carbides

    A Multiplex Quantitative Polymerase Chain Reaction for the Rapid Differential Detection of Subgroups A, B, J, and K Avian Leukosis Viruses

    No full text
    Avian leukosis (AL), caused by avian leukosis virus (ALV), is a contagious tumor disease that results in significant economic losses for the poultry industry. Currently, ALV-A, B, J, and K subgroups are the most common in commercial poultry and cause possible coinfections. Therefore, close monitoring is necessary to avoid greater economic losses. In this study, a novel multiplex quantitative polymerase chain reaction (qPCR) assay was developed to detect ALV-A, ALV-B, ALV-J, and ALV-K with limits of detection of 40, 11, 13.7, and 96 copies/µL, respectively, and no cross-reactivity with other ALV subtypes and avian pathogens. We detected 852 cell cultures inoculated with clinical samples using this method, showing good consistency with conventional PCR and ELISA. The most prevalent ALV strain in Hubei Province, China, was still ALV-J (11.74%). Although single infections with ALV-A, ALV-B, and ALV-K were not found, coinfections with different subgroup strains were identified: 0.7% for ALV-A/J, 0.35% for ALV-B/J, 0.25% for ALV-J/K, and 0.12% for ALV-A/B/K and ALV-A/B/J. Therefore, our novel multiplex qPCR may be a useful tool for molecular epidemiology, clinical detection of ALV, and ALV eradication programs
    corecore