Numerical simulation of vortex instabilities in the wake of a pre-swirl
pumpjet propulsor
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A numerical analysis based on detached eddy simulations is conducted to investigate vortex instabilities in the wake
of a pre-swirl pumpjet propulsor. Three models are established to separate the roles that the rotor, stator, and duct
play in the vortex structure of the pumpjet propulsor. In this paper, only the vortex structure of the rotor is considered.
The results show that the vortex system of the rotor is mainly composed of the tip vortices, a hub vortex, the trailing
tip vortices, and the trailing root vortices. The trailing tip vortices are generated by the premature shedding of the tip
vortices in the rotor model compared with a normal single propeller. The existence of trailing root vortices increases
the stability of the hub vortex. Furthermore, a unique multi-inductance instability mode of the tip vortex, called the
“overlap—forward” phenomenon, is found for low values of the advance coefficient J. It is found that the instability of
the tip vortex depends not only on the spiral-to-spiral distance but also on the highest-efficiency point of the propeller.
The instability inception point of the tip vortex moves farther downstream with increasing J, whereas when J is greater
than the highest-efficiency point of the propeller, the stable length of the tip vortices drops sharply. The energy transfer
process from blade harmonics to shaft harmonics of the tip vortices depends on J and is related to the spatial evolution

of the tip vortices.

I. INTRODUCTION

In recent years, more and more attention has been paid
to research on propeller wake flow. Understanding the wake
flow and wake instability mechanisms associated with marine
propellers is important for naval engineering applications ow-
ing to their direct relationship with propulsion, vibration, and
noise performance of these propellers.’

There have been many studies of propeller wake dy-
namics, both theoretical and experimental. In terms of the-
oretical research, Joukowsky’ was the first to propose
a vortex model for a two-bladed propeller. Since then,
much theoretical work has been done on wake instability
mechanisms.’??????????? As summarized by Kumar and
Mahesh,’” the vortex system of a typical N-bladed rotor is
composed of N helical tip vortices, one hub vortex, and N
trailing edge vortices. The trailing edge vortices, shedding
from the trailing edge of each blade, connect the tip vortex
and hub vortex.

There have also been a number of important experimental
studies of propeller wake dynamics. Felli and co-workers have
done a lot of work in this area. They conducted hydrodynamic
experiments on an INSEAN (Italian National Ship Model
Basin) E779A model propeller in the Italian Navy Cavitation
Tunnel. The flow in the wake of the E779A was measured by
both particle image velocimetry (PIV)? and laser Doppler ve-
locimetry (LDV).? In addition, they performed visualizations
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of wake vortex structures using high-speed cameras.” They
also carried out some water tunnel experiments on other pro-
pellers, such as the seven-bladed E1619 model’ and a four-
bladed ducted propeller’ using LDV and PIV. The propeller
wake dynamics were investigated in all of these experiments.

Recent improvements in computer performance have al-
lowed detailed numerical simulations of wake vortices of ma-
rine propellers. Computational fluid dynamics (CFD) model
is a good candidate to capture information in the flow field,”
and are increasingly being used to study the wake dynam-
ics of marine propellers. Large eddy simulation (LES) has
been applied to simulation of propeller vortex dynamics. Ku-
mar and Mahesh’ performed wall-resolved LES for a five-
bladed marine propeller (DTMB 4381). Posa et al.’ carried
out wall-resolved LES simulations using wall-adapting local
eddy viscosity (WALE) subgrid model of a seven-bladed no-
tional propeller (INSEAN E1658). The main structures of tip
vortices and hub vortices were revealed with high precision.
Of course, LES is expensive in terms of computing resources,
owing to the relatively large total number of grids (840 million
nodes) required. The calculations are also time-consuming.
Consequently, detached eddy simulation (DES) is now be-
ing adopted as a feasible approach for studying wake dynam-
ics, with the flow near walls being calculated by Reynolds-
averaged Navier—Stokes (RANS) turbulence modeling. Mus-
cari et al.” compared RANS and DES for the simulation of
the wake flow of the E779A propeller. Furthermore, DES was
used by Di Mascio ez al.” to study the wake dynamics of the
E779A propeller operating in drift. In addition, Hu et al.’
studied the vortex—rudder interactions behind the E779A pro-
peller using both DES and LES. It was shown that the DES ap-
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proach has the ability to track the onset of vortex instabilities
and its results are in excellent agreement with experimental
observations.

In addition to single propellers, research on wake dynam-
ics has also been extended to new types of propellers, such
as ducted propellers. Felli et al.’ carried out an experiment
with a ducted propeller in a cavitation tunnel, in which they
investigated the impingement of the swirling jet generated by
the propeller against a wall. The jet—wall interaction was ex-
amined in detail using PIV and a high-speed camera. Gong et
al.? compared wake vortex evolution for a ducted and a non-
ducted propeller using DES. Compared with non-ducted pro-
pellers, the duct was found to have a significant effect on the
morphology of the propeller wake vortices.

In this paper, the principal object of study is the pumpjet
propulsor (PJP). This is a new type of underwater propulsor
that is coming into widespread use for underwater vehicles
owing to its excellent hydrodynamic and noise performance.”
Although a considerable amount of experimental research has
been done on the hydrodynamic performance of PJPs??? and
wake dynamics of PJPs. Specifically, Li et al.” compared dif-
ferent hybrid RANS/LES approaches to the simulation of the
wake flow of a pre-swirl PJP. They discussed the effect of the
duct on tip vortices, but did not consider the effect of pre-swirl
stators or the mechanisms of instability associated with PJPs
in any great depth. Qin et al.’ applied DES to a post-swirl
PJP and compared the vortex structures resulting from a nor-
mal PJP and from a PJP with a sawtooth duct. In discussing
their results, they focused mainly on the effect of the sawtooth
structure on the wake vortices from the PJP.

Up to now, most research on the wake dynamics of marine
propellers has focused on single propellers and ducted pro-
pellers, and less attention has been paid to the study of PJPs.
In fact, the vortex instability mechanism associated with PJPs
has yet to be described in the literature.

In the work described in the present paper, a numerical
study is carried out to investigate the vortex instabilities in
the wake of a pre-swirl pumpjet propulsor. Three models (the
rotor, the rotor—duct, and the PJP model) are established to
separate the roles played by the rotor, the stator, and the duct
in the vortex evolution of a PJP. In this paper, only the vortex
structure of a single rotor is considered, with a discussion of
the rotor—duct model and the PJP model being left to Part 2.

The remainder of the paper is organized as follows. In
Sec. II, the numerical methodology is presented. In Sec. III,
the numerical set-up is described, and the simulation re-
sults are validated by comparison with the experimental data.
The results are presented and discussed Sec. IV from three
main aspects: the open water coefficient and unsteady blade
excitation force (Sec. IV A), vortex structure and evolution
(Sec. IV B), and vortex dynamics (Sec. IV B). Finally, the con-
clusions are presented in Sec V.

Il. NUMERICAL METHODOLOGY

The governing equations are the Reynolds-averaged
Navier—Stokes (RANS) equations, which are written as fol-
lows:
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where p is the fluid density, x; and x; (i, j = 1,2,3) are the
Cartesian coordinate components, #; and u; are the compo-
nents of the absolute velocity in the inertial system, p is the
pressure, £ is the time, pu;u’i are the Reynolds stresses, S; is a
generalized source term, U 1s the dynamic viscosity.

The improved delayed detached eddy simulation (IDDES)
model’ is used in this paper to capture the structure of the vor-
tices generated by the propeller. The IDDES model is based
on a modification of the sink term in the k equation of the
shear stress transport (SST) model:
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where the parameter that defines this RANS model is the tur-
bulence length scale [gans = \/IE/ (B*®). The complete for-
mulation is relatively complex, and more details can be found
in Ref. 2.

I1l. NUMERICAL SETUP
A. Geometry

This paper considers a pre-swirl pumpjet propulsor for a
large underwater robot whose design velocity is 20 knots. A
1:20 scale model is used for numerical work (as shown in
Fig. 1(a)), which is the same as the water tunnel test model
(see Fig. 1(b)). The coordinate system for the PJP is estab-
lished as shown in Fig. 1(a). The coordinate origin is located
in the geometric center of the rotor. The Z-axis coincides with
the rotation axis, and the positive direction is the same as the
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FIG. 1. The pre-swirl pumpjet propulsor (a) the numerical model; (b) the experimental model; (c) Side view of PJP; (d) Front view of the rotor;
(e) Front view of the stator.
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FIG. 2. The three models: (a) rotor only (R model); (b) rotor—duct (R-D model); (c) PJP model. The rotor blades are shown in red and the
stator blades in blue.

TABLE I. The geometric parameter of the duct.

Dimensionless quantity of the duct section (the coordinate origin of propeller is at z/D, = 0.64)
z/Dy 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.07
Yinner/Dr 0.6387 0.5868 0.5583 0.5359 0.5182 0.5077 0.5060 0.5060 -0.4987 0.4762 0.4443
Youter/ Dy 0.6387 0.6590 0.6559 0.6444 0.6306 0.6151 0.5978 0.5759 0.5486 0.5166 0.4443
TABLE II. The geometric parameter of the rotor and stator blades.
Parameter  Diameter Blade Zumber Pg;? /rgt:o Max1mu12) .t7h/1chrness ratio Chorcé ;e;l/thl: ratio Rake  Skew Airfoil
Rotor 0.1664 6 4.3500 0.0218 0.3700 0 0 NACAI16
Stator 0.1930 8 0.8700 0.0168 0.2133 0 0 NACA66

incoming flow direction. The X-axis is vertically upward di-
rection. Finally, the Y-axis is determined by the right-hand
rule. As shown in Fig. 1(c), for this pre-swirl pumpjet propul-
sor, the stator (see Fig. 1(e)) is located upstream of the rotor
(see Fig. 1(d)), which can pre-whirl the inlet flow.

This PJP consists of six rotor blades (N, = 6), eight stator
blades (N; = 8) ,and a duct. The mean diameter of the rotor
blades is D, = 0.1664 m, the maximum diameter of the duct
is Dy = 0.2200 m, the length of the duct is L; = 0.1762 m,
and the gap between the tips of the rotor blades and the duct is
1 mm. Table I and Table II give the geometrical details of the
pumpjet propulsor. In Table I, the v, and y,,.r represent the
y coordinates of the inner and outer surface of the duct section

(x=0), respectively. One thing should be mentioned here is
that the installation position of the duct can be determined
by the coordinate origin (the coordinate origin of propeller
is located at z/D, = 0.64). Some main parameters of the rotor
and stator blades are given in Table II. Among them, the pitch
ratio, the maximum thickness ratio, and the chord length ratio
use the corresponding value at r = 0.7R (R is the maximum
radius of blade).

To analyze the influence of the stator and the duct on the
evolution of the wake vortices of the rotor, three models are
established: the R model [Fig. 2(a)], which has only a rotor
and can be considered as a normal single propeller, the R-D
model [Fig. 2(b)], which is composed of a rotor and a duct and



is similar to a ducted propeller, and the PJP model [Fig. 2(c)].

To validate the CFD simulation results, a hydrodynamic ex-
periment on this PJP model was carried out in the Water Tun-
nel of the Science and Technology on Water Jet Propulsion
Laboratory, Marine Design and Research Institute of China
(see Fig. 1(b)). The details of this experiment and the exper-
imental data can be found in Ref. ? . The water tunnel has a
speed range of 0—15 m/s, and the test conditions for this PJP
were values of the advance coefficient J in the range 0.2-1.2,
with a fixed rotational speed of 1200 rev/min.

B. Computational domains and meshes

Here, only the flow of the R model is considered, with a
discussion of the rotor—duct model and the PJP model be-
ing left to Part 2. Hence, only the computational domain of
the R mdoel is shown here (see Fig. 3 (a)). The computa-
tional domain is a cylinder of diameter 10D, and length 20D,,.
The whole computational domain is divided into three subdo-
mains: the rotor domain, the near-field domain, and the far-
field domain. The size of the near-field domain is a cylinder
of diameter 1.5D and length 5D which is chosen according
to the results of previous research.’ The subdomains are con-
nected by interfaces through which flow simulation data are
exchanged.

Structured grid of the R model is generated, and the de-
tails are shown in Fig. 3. Figure 3 (b) gives the meshes in
the middle section (y—z plane) for the R model. The mesh in
the wake of the propeller is refined to enhance the capture of
wake vortices. More details of the mesh can be seen in Fig. 3
(c), where outer O-block grids are generated around the rotor
blades and stator blades to enhance the capture of the bound-
ary layer flow.

To validate the CFD simulation results (compared with the
hydrodynamic experiment data of the PJP model), the grid of
the PJP model is generated (see Figure 4). The topological
structures of the R model and the PJP model are basically the
same. Figure 4(b) shows the duct surface mesh. The mesh of
slices of the rotor domain and the stator domain are shown in
Figs. 4(c) and 4(d), respectively. For both grids, the mean y™*
value of the propeller surfaces is about 5 and the growth rate
is 1.05 (the selection of y™ has been considered in a previous
paper’ ).

In the simulation, the rotational speed of the ro-
tor is fixed as 1200 rev/min, and the inlet velocity
ranges from 0.67m/s-3.99m/s (with J ranges from 0.2-1.2).
Here, the Reynolds number of PJP is defined as Re =

PCi.or (7'rnDr)2 + V£] /I , where C) og is the chord length

of the rotor blade at 1.0R and r is the rotational speed (r/s).
and p is the fluid dynamic viscosity. The Re of the PJP has a
maximum value with about 8.5 x 10°.

Table I1I lists the grid information. The mesh number of the
rotor domain for the R model is 4.26 x 10° and those of the
near-field and far-field domains are 4.44 x 10° and 0.65 x 10°,
respectively, giving a total mesh number of 9.35 x 10°. The
total mesh number is 12.53 x 10° for the PJP model.

TABLE III. Grid information for models.

6
Mesh Total number (x 10°)

Rotor Stator Near-field Far-field Total
domain domain domain domain
R 4.26 — 4.44 0.65 9.35
PJP 4.32 4.29 3.20 0.72 12.53
TABLE IV. Nondimensional physical quantities.
Physical quantity Definition
. Vv
Advance coefficient J=
nD,
. T,
Thrust coefficient of rotor Kry=——;
pnDy
Torque coefficient of rotor Kor = %
pn<Ds
Torque coefficient of stator Kos = st =
pn=D;
T,
Thrust coefficient of duct Krqg= zd v
pnDy
Total thrust coefficient Kr =Krr+Krpy
Total torque coefficient Ko =Ko,
. J Kr
(6] ter effi =——
pen water efficiency n 21 Ky

C. Validation

Table IV lists the definitions of the nondimensional physi-
cal quantities used in the present study. In the table, p is the
fluid density, n is the rotational speed of rotor, D, is the di-
ameter of the rotor blades, V is the far-field incoming flow
velocity, T, and T, are the thrusts generated by the rotor and
stator-duct, respectively (7; = 0 for the R model), and Q, is
the torque of the rotor.

The numerical simulation results for the PJP model for val-
ues of J in the range 0.2-1.2 are compared with the experimen-
tal results in Fig. 5. For each value of J, 45 rotation cycles are
calculated, and the average value of the last 30 cycles is taken
as the final hydrodynamic performance prediction. As can be
seen from Fig. 5, the results are in good agreement with the
experimental values. The maximum relative errors AK7 and
AK are only 4.48% and 1.80%, respectively for J = 0.2. Con-
sidering the machining error of the actual experimental model,
these numerical errors are acceptable. In a word, the hydrody-
namic performance coefficient predicted by the IDDES simu-
lation is accurate compared with the experiment data.

D. Grid and time-step independence tests

To carry out the grid independence test, three different grids
are generated: a coarse grid, a medium grid, and a fine grid.
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FIG. 3. Computational domains and grids of the R model.
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FIG. 4. Grid details for the PJP model: (a) blade surface mesh; (b) duct surface mesh; (c) slice of stator domain; (d) slice of rotor domain.
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FIG. 5. Hydrodynamic coefficients of the PJP compared with exper-
imental data.

Figure 6 compares the meshes in the y—z plane of these three
grids. For these three grids, the height of the first boundary
layer mesh is kept unchanged to ensure that the y* value near
wall unchanged. However, the nodes in the axial, tangential
and radial directions are encrypted. As can be seen, the grids
inside the duct and in the wake region of the PJP model are
gradually refined. The number of nodes distributed around
the airfoil of the rotor for the coarse grid is 81, and those of
the medium and fine grids are 121 and 181, respectively. The
maximum length of cells is defined as Ayqr = max(Ay, Ay, A;),
where Ay, Ay, A, is the length of cells in the x, y and z direc-
tion, respectively. Considering the wake of PJP, we use the
grid size at 1D, downstream of the duct as the judgment basis.
For the coarse grid, the maximum size of cells at 1D, down-

TABLE V. Grid independence verification for the PJP model with the
IDDES simulation.

J ¢  Coarse Medium  Fine e’ GCB2,.
04 K7, 0.6146  0.6124  0.6122  0.0003 0.03%

" Kor 0.1020 0.1013  0.1016 0.0036 0.37%
10 Kr, 04948 04903  0.4880 0.0048 0.49%

" Ko 0.0852 0.0847  0.0839 0.0094 0.96%

stream of the duct is Apax = 2%D,, while 1.5%D, and 1%D,
for the medium and fine grid. Similar discussions of the mesh
refinement can be found in Ref. ? . The total number of cells
for the coarse grid is 8.38 x 10°, and those of the medium and
fine grids are 12.53 x 10° and 24.59 x 109, respectively.

IDDES simulations of the three grids are carried out for
J = 0.4 and 1.0. Based on the theory of Celik et al.,” the grid
convergence index (GCI) of the hydrodynamic coefficients for
the PJP model is calculated, as shown in Table V. The nu-
merical uncertainties in the medium-grid solution (GCI2, ;. )
for K7, and Kp, have maximum values of about 0.96% for
J = 1.0. Hence the hydrodynamic performance exhibits good
convergence as the grid is refined. In general, the grid inde-
pendence is satisfactorily verified. Considering the computa-
tional time consumption, the medium grid is selected in the
following simulations.

For time-step independence verification, three different
time steps, Ar = 2t, t, and 0.5¢ are chosen (where ¢ is the time
taken for the rotor blades to rotate 1°). An IDDES simulation
of the PJP model is performed for the case J = 1.0. The results
for the hydrodynamic coefficient of the PJP model at the dif-
ferent different time steps are compared in Table VI. As can
be seen, both K7, and Ky, increase gradually and approach
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FIG. 6. Mesh details in the y—z plane for (a) the coarse grid, (b) the medium grid, and (c) the fine grid.

TABLE VI. Time-step independence verification for the PJP model.

Hydrodynamic 2t t 0.5¢ EXP
coefficients
K7, 0.4886 0.4903 0.4904 0.4973
Kry —0.0646 —0.0658 —0.0660 —
Kor 0.0843 0.0846 0.0848 0.0866
1.0 T T T T T T T T T T
—a K_rr —e— 1OKQr n
0.8 ]
% 0.6 4 e
S 044 .
:E‘ 0.2+ 4
0.0 UL L L L L L L L L

1.1

FIG. 7. Hydrodynamic performance of propellers: (a) open water co-
efficient; (b) Kr and 10Kp; (¢) K1, and 10K74.

the experimental values as the time step decreases. Hence,
the predicted hydrodynamic performance shows good conver-
gence with changes in time step. Considering the rapid in-
crease in calculational costs brought about by the use of very
small time steps, we adopt Ar = ¢ in the following study.

Thus, both grid and time-step independence are satisfacto-
rily verified.

IV. FLOW RESULTS AND DISCUSSION

A. Open water coefficient

Figure 7 shows the hydrodynamic coefficients of the R
model. The R model, which is equivalent to an ordinary sin-
gle propeller, reaches its maximum point about 60.24% for
J = 0.8. In addition, for the R model, both the thrust coeffi-
cient K7, and the torque coefficient Kp, decrease linearly with

increasing J , whereas for the PJP model (see Fig. 5), it de-
creases with an increasing slope. It maybe caused by the pres-
ence of a stator. In addition, the K7, of the PJP has a signifi-
cant increase at calculated cases of J than the R model, which
shows that the presence of a stator improves the working con-
dition of the rotor very well. More details will be discussed in
next part.

One thing should be mentioned here is that after exceeding
the optimal efficiency point (J=0.8), the open water efficiency
of the R model decreases sharply. This is a very important
phenomenon because it will directly affect the instability of
vortices of propeller. The relationship between vortices insta-
bility and J will be discussed in detail below.

B. Vortex structure and evolution of the R model

Figure 8 shows the instantaneous Q surfaces of the R model
for the case J = 0.8. According to the experiment of Felli et
al.’ the wake vortex of an E779a propeller is mainly com-
posed of a tip vortex and a hub vortex. Similar tip and hub
vortices can be clearly observed in Fig. 8.

First, let us examine the tip vortex. For the R model,
tip vortices are shed from the tip of each rotor blade and
present themselves as a series of spiral filaments. As shown
in Fig. 9(a), for J = 0.8, these filaments maintain their spiral
shape for a long distance downstream of the propeller until
they gradually break down and disappear in the far field.

Second, from Fig. 8(b), we can see that the hub vortex
falls off from the tail of the hub and then retains a straight-
line shape until the far field. Figure 9(b) shows the three-
dimensional structure of the hub vortex. As can be seen, the
hub vortex is not completely stable, but undergoes spiral pre-
cession, which is similar to the picture captured by Felli et
al.’ in their experiment. The rotational frequency of the hub
vortex will be discussed in the later dynamic analysis.

Figure 10 shows the complex vortex system of the R model,
with the vortices indicated by red and black circles. As well as
the hub and tip vortices, three series of small vortices called
the trailing tip vortex, trailing root vortex 1 and trailing root
vortex 2, are generated. In fact, the trailing tip vortex and trail-
ing root vortices 1 and 2 originate from the trailing edge vortex
sheet of the rotor blade. According to the work by Okulov and
Sgrensen,’ the trailing edge vortex is a helical vortex sheet
that is shed from the trailing edge of the rotor blade as a result
of the nonconstant circulation of the rotor. These trailing edge
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FIG. 8. Instantaneous Q surfaces of the R model for the case J = 0.8, colored by the velocity magnitude scaled by U: (top) Q = 1000 s~2;

(bottom) O = 3000 s~2. (a) Overall view. (b) View of the half-model.
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FIG. 9. Three-dimensional views of the vortex structure of the R model for J = 0.8: (a) instantaneous Q surface (Q = 3000 s72); (b) instanta-

neous Q surface (Q = 100000 s~2).
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FIG. 10. Vortex system of the R model shown as instantaneous Q surfaces (Q = 1000 s72).

vortices and strong tip vortices form a screw surface behind
the rotor.

Figure 11 shows a three-dimensional view of the structure
of the trailing edge vortex sheet of the rotor. As can be seen
from Fig.11(a), a layer of the vortex sheet falls off from the
edge of the rotor, and then gradually collapses along with the
strong tip vortices. At the tip and root of the trailing edge, two
groups of strong vortices [see Fig. 11(b)] are formed, which

are called trailing tip and trailing root vortices, respectively.

With the development of trailing tip vortices downstream,
a group of spiral filaments are formed on the inner side of
the rotor tip vortices (see Fig. 10). The spiral direction of the
trailing tip vortex filaments is the same as that of the rotor tip
vortices.

The trailing root vortices are shed from the root of the rotor
blade trailing edge and consist of small vortices [as shown in



Vorticity: 400 475 550 625 700 775 850 925 1000

(2)

Rotor trailing
edge vortex sheet

Trailing tip
vortices

Trailing root
vortices

(b) 2/D<0.3

FIG. 11. Views of the trailing edge vortex sheet: (a) instantaneous surfaces of vorticity magnitude; (b) instantaneous Q surface (Q = 5000 s72).
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FIG. 12. Views of tip vortices: (a) contours of the pressure coefficient C;, on the suction side of the rotor; (b) contours of C,, on the pressure

side of the rotor; (c) streamlines at the tip of the rotor blade.

Fig. 11(b)]. With the development of the trailing root vortices
downstream, two groups of spiral filaments are formed around
the hub vortex, which are called the trailing root vortex 1 and
trailing root vortex 2, respectively. They rotate in the same
direction as the rotor tip vortex.

Similar trailing root vortex structures have been found in
other studies.” > As shown in Fig. 10, the diameter of the root
vortex gradually increases with its downstream development.
In the far-field region, the diameter is about 0.5D,.. In addition,
the trailing root vortex survives for a greater distance from the
rotor ‘Ehan the trailing tip vortex, which was also found by Posa
etal’

For the R model studied here, we speculate that the forma-
tion of the trailing tip vortex is due to the unique blade with
a broad tip designed for duct propellers and PJPs. The E779a
propeller studied in the experiments by Felli ef al.’ and Posa
et al.’ is a typical single propeller with sharp-tipped blades.
Therefore, the trailing tip vortices of E779a merge with the
rotor tip vortices, resulting in the disappearance of the trailing
tip vortices. Figure 12 confirms this conjecture. Figures 12(a)
and 12(b) show contours of the pressure coefficient of a ro-
tor blade, and it can be seen that there are two obvious low-
pressure areas on the suction side of the blade, while the pres-
sure in most areas on the pressure side is higher, resulting in
fluid being sucked from the pressure side to the suction side,
which eventually leads to the formation of a rotor tip vortex.

We can see that a tip vortex forms from about z/D = 0
(about the middle of the rotor) and then gradually sheds from

the tip of the rotor. Therefore, the tip vortex is not shed from
the trailing edge of the rotor blade, as in the case of an or-
dinary single propeller, but rather falls off in advance at the
tip before the trailing edge. Hence, the trailing tip vortex is
formed owing to premature shedding of tip vortices by the R
model compared with a normal single propeller.

Figure 13 shows the instantaneous flow field in the y—z
plane of the R model for J = 0.8. From the contours of the
pressure coefficient in the y—z plane in Fig. 13(a), the positions
of the tip vortices can be clearly observed as low-pressure
zones marked by red circles. As can be seen, after shedding
from the rotor blade (r = 0.5D,), the tip vortices gradually
shrink inward in the radial direction until z/D = 1.5, after
which they remain nearly unchanged at about r = 0.4D, and
z/D = 1.5-3. After z/D = 3, the low-pressure region of the
tip vortex gradually merges with the low-pressure wake be-
hind the propeller and finally dissipates in the far field. The
hub vortex appears as a straight low-pressure area after shed-
ding from the tail of the hub from z/D = 0.5 to the far field.

The axial velocity in the y-z plane is visualized in
Fig. 13(b), and the periodic fluid acceleration caused by the
rotor blade rotation can be observed. Figure 13(c) shows the
vorticity magnitude in the y—z plane, and, in addition to con-
spicuous areas of tip and hub vortices, there is an obvious
wake caused by the trailing edge vortex and persisting for
a long distance (from z/D = 0 to 2.5). Hence, the near field
downstream of the propeller is dominated by coherent tip vor-
tices, a concentrated hub vortex, and the blade trailing edge
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wake.

According to Okulov and Sgrensen,’ a complicated roll-up
process occurs owing to the mutual interaction between the
trailing edge vortices and the tip vortices. More importantly,
the roll-up process will have a significant effect on the stability
of the tip vortices.

Instantaneous surfaces of the vorticity magnitude are shown
in Fig. 14(a), while Fig. 14(b) shows the contours of the x
component of vorticity in the y—z plane. The axial evolution of
the blade trailing vortex sheet can be clearly observed. Based
on these two figures, we show in Fig. 14(c) a schematic repre-
sentation of the roll-up process of the rotor blade trailing edge
vortex sheet in the y—z plane. In this illustration, different col-
ored ovals represent vortex centers with different directions of
rotation (@,). Blue means that the x component of vorticity
is negative, while red means that it is positive, and the cor-
responding rotation direction is indicated with an arrow. As
previously discussed, owing to the premature shedding of tip
vortices, the trailing tip vortices will separate from those tip
vortices after falling off the tip of the blade, as shown by the
rotor tip vortices and trailing tip vortices in Fig. 14(c) (marked
with blue ovals).

The spatial evolution of the roll-up of the rotor blade trail-
ing edge vortex is reflected not only in the axial direction
(Fig. 14), but also in the radial direction (Fig. 15). The con-
tours of the vorticity magnitude at different z positions are
shown in Fig. 15.

After shedding from the trailing edge of the rotor, the vor-

tex has the same shape as the trailing edge. Then, as it de-
velops downstream (from z/D = 0.1), the upper part of the
trailing vortex gradually bends. For greater clarity, we give
a schematic representation of the roll-up process in Fig. 16.
This progressive bending of the trailing edge vortex is called
roll-up. More specifically, the trailing edge vortex gradually
becomes distorted, with progressively increasing angular dis-
placements and a radial rise of its upper part. As a result, the
distance between the trailing edge vortex and the next tip vor-
tex gradually decreases, which means that the mutual inter-
action between the trailing edge vortex and the tip vortex be-
comes stronger and stronger with downstream development.
This process is similar to the phenomenon described by Ku-
mar and Mahesh.”

We can see that with increasing z/D, the trailing wake grad-
ually diverges from the shape of the trailing edge (z/D = 0.1-
0.2) and divides into several separate wakes (z/D = 0.3-1).
At z/D = 0.4 [see Fig. 15(f)], the wake of the former trail-
ing vortex is in contact with the next tip vortex. After that, the
interaction between the tip vortex and the corresponding trail-
ing vortex becomes weaker and weaker. At z/D = 1, the two
vortices are almost completely separated. Therefore, the roll-
up process can be divided into the following three processes:
(1) the top of the trailing edge vortex bends (z/D = 0.1-0.3);
(2) the upper part of the trailing edge vortex approaches and
comes into contact with the next tip vortex (z/D = 0.4-0.6);
(3) there is complete separation of the trailing edge vortex
from the previous tip vortex (z/D = 0.6-1.0). If we adopt po-
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lar coordinates in the x—y plane (radius r and angle ¢), then the
phase difference between the tip vortex and the corresponding
trailing vortex is small at at z/D = 0.1 but becomes larger and
larger with increasing z. At z/D = 1, the trailing vortex has a
phase lag of about 60° compared with the corresponding tip
vortex.

This roll-up process takes place in three dimensions, and its
axial evolution is shown in Fig. 14(c). From z/D = 0.1 to 0.6,
corresponding to the roll-up of the trailing vortex, the pitch of
the trailing tip vortex increases gradually (note the closeness
of the third trailing tip vortex to the fourth tip vortex.).

According to Okulov’s conjecture,’ the complete develop-
ment of the roll-up process triggers instability of the tip vor-
tices. However, according to the present results, for the R
model, the behavior is entirely different. After the complete
development of the roll-up process (at nearly z/D = 0.6), the
tip vortex always remains stable, with a fixed radius and the
same spiral-to-spiral distance. The conclusion that complete
development of the roll-up process triggers instability of the

tip vortices does not seem to apply to this model.

We suspect that, as discussed before, for the present R
model, the separation of the tip vortex and the trailing tip vor-
tex caused by the wide tip blade is the reason. It should be
mentioned that the directions of rotation of the tip vortices
and the trailing tip vortices are the same [with the same vor-
ticity x components shown as blue ovals in Fig. 14(c)]. There-
fore, it seems that there is a repulsive force between the tip
vortex and trailing tip vortex, which causes a significant de-
crease in the radius of the trailing tip vortex, while the tip vor-
tex radius remains nearly unchanged. The trailing tip vortex
takes the place of the tip vortex. After the full development of
the roll-up process (from z/D = 0.6), the tip vortex and the
trailing vortex are completely separated, as a consequence of
which the interaction between the trailing root vortex and the
tip vortex is replaced by that between the trailing root vortex
and the trailing tip vortex. Figures 14(b) and 14(c) support
this conclusion. The directions of rotation of the trailing root
vortex and the trailing tip vortex are opposite, and so there is
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mutual attraction between these two vortices, resulting in an
increase in the radius of the trailing root vortex (which is the
same conclusion as that drawn by Kumar and Mahesh? ). At
z/D = 1.5, the trailing tip vortex splits into two parts owing to
the attraction by the trailing root vortex. After that, the main
part is attracted to the trailing root vortex and finally fused
with it, while the remaining small part gradually dissipates
[see Fig. 14(a)].

In conclusion, for the R model, for J = 0.8, the premature
shedding of tip vortices leads to the appearance of a trailing
tip vortex. This trailing tip vortex takes over the role of the tip
vortices, which leads to the disappear of the mutual interaction

of two adjacent tip vortices (i.e., without the occurrence of
the mutual-inductance instability mode® ), as a consequence
of which the tip vortices are stable for the R model.

The hub vortex of the R model is different from that of the
E779a propeller. In the experiment by Felli ef al.,” the hub
vortex remained stable and started to oscillate, following a
spiral shape from the transition point until double-helix break-
down occurred in the far field. For the R model, the hub vortex
takes the form of twisted vortices until it fades out into a large
vortex in the far field (see Fig. 10). It should be noted that the
region in which the hub vortex maintains its twist is basically
the same as the region in which trailing root vortices exist (see
Fig. 10). When the trailing root vortices gradually dissipate,
the distortion of the hub vortex gradually disappears. There-
fore, we can reasonably speculate that the existence of trailing
root vortices is the reason why the hub vortex can continue to
twist without the occurrence of instability.

The mechanism by which instability of the tip and hub vor-
tices is triggered will be discussed below.

Figure 17 shows the instantaneous Q surface of the R model
for different values of J. As classified by Widnall® and Felli
et al.,’ there are three main instability modes of a tip vor-
tex: short-wave instability, long-wave instability, and mutual-
inductance instability.

Here, the evolution of the tip vortices of the R model ex-



hibits different instability modes for different values of J. As
defined by Widnall,” the mutual-inductance instability mode
occurs when adjacent helical tip filaments begin to interact
strongly. At low J (J = 0.2, 0.4, and 0.6), twisting of tip vor-
tices and contact between adjacent vortices can be clearly ob-
served. According to Felli er al.,’ the instability inception
point of tip vortices is defined as the first position at which the
gradient of the tip vortex envelope equals 50% of the max-
imum slope. Here, it is hard to adopt their definition, since
the maximum slope of the tip vortex envelope can be zero
in some cases, such as J = 0.8. Hence, we give a relatively
vague definition of the instability inception point of tip vor-
tices as the first position at which the tip vortex is becoming
destabilized. More specifically, the filament of the tip vortex
begins to twist and the shape of the filament is no longer a
standard spiral. According to the instability inception point,
the wake of the R model can be divided into two parts: a sta-
ble region and an unstable region. The instability inception
points of tip vortices for different values of J are shown by the
dashed lines in Fig. 17(a). For J = 0.8, there is an instability
inception point at which short-wave instability is observed.
According to Saffman,’ the short-wave instability shows as
a smooth-sinuous-wave-type mode, with small sinusoidal dis-
placements of one filament (see Fig. 19). For J = 1.0, an insta-
bility inception point appears at which the tip vortices break
down.

To quantitatively study the relationship between spiral-to-
spiral distance and tip vortex instability, the helical pitch of tip
filaments, P, is defined as the axial distance between two adja-
cent helical filaments. The axial distance that a spiral filament
moves in one revolution is called the lead S. Thus, S = nP,
where n is the number of blades on the rotor (n = 6 here).

It should be noted that P changes as the tip vortices evolve,
especially in the case J = 0.2, for which violent interactions
between adjacent tip filaments occur. The instantaneous heli-
cal pitch ratio of tip filaments, P/D, for different values of J is
shown in Fig. 18. According to these results, the P/D between
tip filaments 1 and 2 increases monotonically with increasing
J. For J = 0.2, P/D is about 0.1, while it is about 0.15 for
J=1.0.

To show the instability of the tip vortex more clearly, the in-
stantaneous three-dimensional trajectories of a single filament
for the R model at different values of J are shown in Fig. 19.

For 0.2 < J < 0.8 (below the optimal operating point for the
R model), P/D of the first two tip filaments increases mono-
tonically with increasing J (see Fig. 18), and, similarly, the in-
stability inception point moves further upstream with increas-
ing J (see Fig. 19, where the instability inception point moves
from z/D = 0.4 to 1.7 as J increases from 0.2 to 0.8). There-
fore, it can be concluded that the instability of the tip vortex
depends on helical the pitch ratio of tip filaments, P/D. This
is consistent with the conclusions of Felli et al.’ and Okulov®
that the transition to instability of the tip vortex shows a clear
dependence on the spiral-to-spiral distance. More specifically,
the larger the value of P/D, the weaker is the interaction be-
tween adjacent tip filaments, the less likely is the mutual-
inductance instability mode to occur, and the longer is the sta-
ble length of tip vortices.
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In the case J = 1.0, as shown in Fig. 17, the tip vortex dis-
sipates rapidly after shedding from the tip, owing to the rotor
working in an unfavorable condition. It is therefore hard to de-
fine an instability inception point. Here, we take the instability
inception point as being the point at which the tip vortex be-
gins to break down. Compared with the case J = 0.8, the P/D
of the tip vortex for J = 1.0 increases slightly, while its stable
length drops sharply. This sharp decrease in the stable length
of the tip vortex is related to the decrease in its strength, rather
than to interaction between tip vortices. Support for this spec-
ulation comes from the fact that (see Fig. 17) for / = 0.8 and
1.0, there is no mutual-inductance instability, but breakdown
gradually occurs during transition of the tip vortex from the
stable to the unstable region.

For low J (in the range 0.2-0.6, especially J = 0.2), the
mutual-inductance instability mode clearly occurs. For the R
model, the mutual-inductance instability mode for tip vor-
tices is quite different from the classic “leapfrogging” phe-
nomenon. More information about the leapfrogging phe-
nomenon can be found in Ref. ? .

A detailed illustration of this unique instability mode for
the R model is presented in Fig. 20:

(1) During t to tp + %T, filaments 1 and 2 begin with the
same spiral shape. During this period, the filaments
have just detached from the tip of the rotor, the space
between filaments is uniform, and there is as yet no mu-
tual interaction between them.

(i) At 1o+ %T, as a result of the mutual inductance be-
tween adjacent filaments, filament 2 is pulled closer
to filament 1. It should be mentioned that the radius
of filament 2 decreases as it moves [see Fig. 20(d)];
meanwhile, the radius of filament 1 (the front fila-
ment) expands slightly (similar to the leapfrogging phe-
nomenon).

(iii) During to + %T to fo + %T, filament 2 comes into con-
tact with filament 1 (with the radius of filament 2 be-
ing smaller than that of filament 1). Filament 2 is then
pulled forward through filament 1 (the front filament),
resulting in overlapping of these filaments. This phe-
nomenon is slightly different from what Felli ez al.” ob-
served in their experiment, where filament 2 kept mov-
ing downstream after it was pulled forward through fil-
ament 1. Here, after filament 2 is pulled before filament
1, it is pulled back to filament 3 again. Filament 2 is at-
tracted by filament 3, forming a new filament 2-3 over-
lap.

(iv) During ty + gT tofo+ %T, the same process is repeated:
filament 4 moves close to filament 3, and these filaments
then come into contact and overlap. Finally, filament 5
merges with filament 6.

Processes (i)—(iv) represent the time evolution of the tip vortex
for the R model. This mutual inductance instability of the tip
vortex is called the “overlap—forward” phenomenon here.
Next, we consider the spatial evolution of the tip vortex.
Figure 21 shows the three-dimensional vortex structure at t =
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o+ %T for J =0.2. As can be seen in Fig. 21(a), three large tip
vortices are formed, each of which is generated by the merger
of two adjacent tip filaments (of filaments land 2, of filaments
3 and 4, and of filaments 5 and 6, respectively). The specific
merger process can be seen in Fig. 20. The merger results in
a clear increase in the helical pitch ratio of tip filaments, P/D
(see J = 0.2 in Fig. 18). In addition, the next P/D becomes

zero owing to the merger. It should be mentioned here that the
number of filaments in Fig. 18 is different from that in Figs. 20
and 21.

Here, the merger of vortices is similar to the “multistep”
grouping mechanism observed in the experiment by Felli et

al.® The difference is that the merged vortex can only remain

stable for a very short distance, after which it splits into the
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two original tip filaments again owing to the interaction be-
tween tip vortices. After the splitting of the three merged vor-
tices, a complex overlap interaction mode arises between the
six filaments, and finally all of them gradually break down.
For the six-bladed propeller in this study, there is no multi-
step grouping mechanism as captured by Felli er al.,” but a
“merger—splitting” process does occur. We speculate that the
reason for this is that the number of rotor blades (n = 6) is
greater than that (n = 2,3,0r4) in the Felli ef al. experiment,
leading to a much smaller spiral-to-spiral distance than in the
case of the E779a propeller. As shown in Fig. 18, P/D for
J = 0.2 is much smaller than in the other cases, which causes a
strong interaction between tip vortices. This merger—splitting
phenomenon occurs only for J = 0.2, not for J = 0.4 or 0.6,
which confirms that the mutual-inductance instability and its
underlying mechanism depend on the spiral-to-spiral distance,
i.e., the helical pitch ratio of tip filaments.

From the above discussion, it can be seen that the roll-up
process of the trailing edge vortex does not affect the stability
of the tip vortex for J = 0.8. Therefore, it might be asked what
role does the roll-up process play in the case J = 0.2?

The contours of the vorticity magnitude in different z slices
for J = 0.2 are shown in Fig. 22. Compared with the case J =
0.8, fully developed roll-up occurs more rapidly, and the trail-
ing edge is in contact with the next tip vortex at z/D = 0.15
(for J = 0.8, contact occurs at about z/D = 0.4). Therefore,
the smaller the value of J, the more rapid is the roll-up of the
trailing edge vortex. At z/D = 0.3, after the trailing edge vor-
tex has come into contact with the next tip vortex, the angular
displacement continues to increase, until the trailing edge vor-
tex has contacted the second tip vortex and mutual-inductance
instability of the tip vortices occurs. The six tip vortices are
no longer uniformly distributed, but move closer to each other
[Fig. 22(e)], merge with adjacent tip filaments [Fig. 22(f)], and
each splits again into two isolated tip vortices [Fig. 22(g)], as
discussed above.

Figure 23 shows the instantaneous flow field in y—z plane of
the R model for J = 0.2. The low-pressure regions of the tip
vortex are marked with red circles in Fig. 23(a), and it can be
seen that the distance between adjacent low-pressure regions
is clearly smaller than in the case J = 0.8, which is consistent
with the trend of change of P/D. Furthermore, the distribu-
tion of low-pressure regions exhibits an obvious asymmetry,
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which is caused by the merger and splitting of tip vortices.
The contours of axial velocity [Fig. 23(b)] and vorticity mag-
nitude [Fig. 23(c)] also exhibit the same asymmetry caused by
mutual-inductance instability of the tip vortices.

The wake of the trailing edge vortex can be seen clearly at
z/D = 0-0.5. However, with the development of flow down-
stream, the trailing edge vortex gradually twists at z/D = 0.5—
1.5 and breaks down rapidly in the range z/D > 1.5. The mu-
tual inductance between tip vortex and trailing edge vortex
further stimulates the instability of the tip vortex. Figure 24
shows the contours of axial velocity and vorticity magnitude
for / = 0.4 and 0.6. From a comparison of Fig. 23(c) with
Figs. 24(c) and 24(d), we can see that the trailing edge vortex
wake continues to gradually extend further downstream with
increasing J.

The contours of the vorticity magnitude in the slice z/D =
0.15 for different values of J are shown in Fig. 25. For J = 0.2,
the wake of the trailing edge vortex is almost completely in
contact with the next vortex. For / = 0.4 and 0.6, there is
strong bending of the tip of the trailing wake owing to at-
traction by the next tip vortex. However, the bending of the
trailing wake is clearly weaker for J/ = 0.8 and 1.0. Hence, the
smaller the value of J, the faster is the roll-up of the trailing
edge vortex.

As discussed above, the pitch ratio P/D increases gradu-
ally with increasing J. As a result, the multiple interactions
between tip vortices become weak, which delays the full de-
velopment of the roll-up process and finally reduces the like-
lihood of instability of the tip vortex.

As for the hub vortex, as shown in Fig. 23, for J = 0.2, it al-
ways remains unstable after shedding from the hub. It should
be noted that there is no trailing root vortex for J = 0.2. For J
in the range 0.4-1.0, the hub vortex undergoes the same form
of evolution, maintaining spiral twisted form in the near field
and then gradually becoming stable, as shown by its straight
line motion. This behavior is completely different from that of
the hub vortex of the E779A propeller.” As for the R model,
as discussed earlier, the spiral twisted form of the hub vortex
in the near-field region is caused by the presence of the trailing
root vortex. As shown in Fig. 17, the breakdown point of the
trailing root vortex moves further downstream with increasing
J. For J = 1.0, even though the tip vortex break down quickly,
the trailing root vortex survive for the longest distance com-
pared with the other cases. More importantly, the twist region
of the hub vortex maintains the same distance from the trail-
ing root vortex. For J = 0.6 and 0.8, breakdown of the trailing
root vortex also occurs almost simultaneously with the disap-
pearance of the twist in the hub vortex. Hence, the presence
of trailing root vortices is the reason why the hub vortex can
continue to twist without instability arising. The period of the
hub vortex oscillation will be discussed below.

C. Vortex dynamics

To study the dynamical behavior of the hub and tip vortices
for the R model, an analysis of the turbulence kinetic energy
(TKE) is carried out. Probes are located at different stream-
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wise positions behind the tip of the rotor (probes P1, ..., P§
at r/D = 0.45) and hub (probes P9, ..., P16), as shown in
Fig. 26. The time histories acquired at these probes are shown
in Figs. 27 and 28.

The different unstable transition forms of the tip vortex for
different values of J can clearly be seen in Fig. 27. For J = 0.2,
the TKE values are chaotic at P1, ..., P8, which indicates that
the tip vortex always remains unstable at z/D = 0.5. This is
consistent with the evolution of tip vortex discussed earlier
(see Fig. 17). For J = 0.6, the TKE clearly exhibits periodic
characteristic at P1. From about P3 (z/D = 1.5) onward, the
TKE signal begins to lose its purely periodic characteristic
and exhibits nonperiodicity and randomicity. This is consis-
tent with the location of the inception point of tip vortex in-
stability for J = 0.6 (at about z/D = 1.44). For J = 1.0, which
is similar to the case J = 0.8, the TKE signals at P1, ..., P§
always exhibit periodicity in time.

For the region of the hub vortex, the time histories of TKE
at P9, ..., P16 (behind the hub) are shown in Fig. 28. For J =
0.2, the TKE signals at P9, ..., P16 are always chaotic. Hence,
the hub vortex for J = 0.2 always remains unstable. For J =
0.6, the TKE signals at P14, ..., P16 remain nearly constant in
time, which corresponds to the stable region of the hub vortex
following the gradual disappearance of distortion after z/D >
3. For J = 1.0, the unstable region survives longer than for
J = 0.8. The hub vortex retains a double-helical progressive

motion until P16.

A comparison of TKE time histories for different values of
J at P1 and P9 is shown in Fig. 29. The variations for J = 0.6
and 1.0 have the same period, %T (where T is the rotation pe-
riod of the hub: % s =0.05 s), whereas for J = 0.2, a distinct
period %T is observed. As discussed before, this is a conse-
quence of the merger of each pair of adjacent tip filaments.
Hence, the period of tip vortex shedding for the R model is
(1/n)T (where n is the number of rotor blades) in most cases
except in some cases of low J (J < 0.2). At P9, the TKE value
for J/ = 0.2 is more like a random signal, whereas that for
J = 1.0 has an approximately straight line form, which is con-
sistent with the earlier discussion of hub vortex stability.

A frequency analysis of TKE for different values of J is
carried out, as shown in Figs. 30 and 32. The power spectral
density (PSD) of the TKE at probes P1, ..., P16 is computed.
First, for the near field of the tip vortices (P1, ..., P3), for all
three values of J, the PSD has obvious peaks at fgpr (the blade
passing frequency) and its harmonics. In addition, as can be
seen in Fig. 29, the TKE at P1 for J = 0.2 has a peak at 0.5 fgpr
and its harmonics (fgpr and 1.5 fgpr), which corresponding to
the %T period resulting from the merger of tip vortices. In
the far-field region (PS5, ..., P7), the peaks at n fgpr gradually
disappear and are replaced with several peaks at fy, 2 fy, and
4 fy. Furthermore, at P7 and P8, the spectral lines show near-
broadband characteristics.
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FIG. 22. Contours of the vorticity magnitude for J = 0.2 in different z slices, normalized with U /D

This energy transfer process from blade harmonics to shaft
harmonics has been verified experimentally by Felli er al..”
To show the energy transfer process more clearly, the ampli-
tudes of the PSD at fy to 6fy (= fgpr) are shown in Fig. 31.
As can be seen, the streamwise evolution of the PSD of the
TKE demonstrates a mechanism of energy relocation from
blade harmonics to shaft harmonics 7 fgpr. More specifically,
the amplitude of the PSD at the fundamental frequency fgpr
decreases gradually with increasing shaft frequency fy and
with increasing z/D. In addition, some differences are found.
For a four-bladed propeller, the energy transfer is divided into
two steps: (i) the first energy transfer from fgpr to 0.5 fpr; (ii)
the second energy transfer from 0.5 fgpr to fx. Corresponding
to this two-step process is a group of multiple tip vortices, as
described by Felli ez al..’”

For the R model studied here, such a two-step energy trans-
fer process is not found. The PSD at fy to 5 fy exhibits a dif-
ferent trend of change with J. For all values of J, the contribu-
tion at the fundamental frequency fgpr gradually disappears.
The greater the value of J, the steeper is the slope of decrease
of PSD at JBPF-

For J = 0.6, at z/D = 1.0-2.5, all the contributions at fy
to 5fy increase gradually. Then, at z/D = 2.5-4, the PSD at

fn continues to increase, while the components at 2 fx to 5 fy
decrease rapidly. However, for J = 1.0, the trend of energy
change is quite different. In the near-field region z/D = 0.5
2, all the contributions at fy to 5fy clearly decrease, which
is consistent with the rapid breakdown of the tip vortex ob-
served in Fig. 17. In the far-field region z/D = 2-4, only the
contribution at fy is increased. For J = 0.2, the PSD changes
chaotically. In the range z/D = 0.5-4, the PSD amplitude at
[ to 4 fy experiences periodic fluctuations. We speculate that
these may be caused by the merger and separation of tip vor-
tices. This also confirms the conclusion by Felli ef al.” that
the energy transfer process is closely related to the tip vortex
evolution.

In general, an energy transfer of tip vortices from blade har-
monics to shaft harmonics is found. The specific mechanism
of this energy transfer depends on J and is related to tip vortex
evolution.

For the hub vortex, the PSD spectra at P9, ..., P16 are
shown in Fig. 32. For J = 0.2, the PSD spectrum is basically
a broadband spectrum corresponding to instability of the hub
vortex. For J = 0.6 and 1.0, several peaks at fy to 4fy can
be seen in Figs. 32(b) and 32(c). Therefore, the characteristic
frequency of evolution for the hub vortex should be fy and
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the period of double-helical motion of the hub vortex should V. CONCLUSIONS
equal one propeller revolution 7' (the hub rotation period).

In this paper, DES studies of vortex instabilities in the wake
of a pre-swirl pumpjet propulsor (PJP) have been carried out.
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To separate the roles played by the rotor, stator, and duct in
determining the vortex structure of a PJP, three models have
been established: the R model (rotor only), the R-D model (ro-
tor within a duct), and the PJP model (rotor and stator within
a duct). In this paper, only the three-dimensional vortex struc-
ture of a single rotor has been considered: the R-D and PJP
models will be discussed in detail in Part 2.

The instantaneous wake vortex structure, the evolution in
time and space of the tip and hub vortices, the transition from
stability to instability of tip and hub vortices, the instability
trigger mechanism, the unique roll-up process of the R model,
and the vortex dynamics have been analyzed systematically.

The numerical results reveal the following:

1. A unique trailing tip vortex is found in the wake of the
R model, together with the tip vortex and trailing root
vortex. This vortex, appearing as spiral filaments within
the tip filaments, is caused by premature shedding of tip
vortices in the R model compared with a normal single
propeller.

2. The roll-up process of the trailing edge vortex of the R
model with broad-tipped rotor blades is slightly differ-
ent from the process for a normal single propeller. There
is mutual attraction between the trailing root vortex and
the trailing tip vortex. The trailing tip vortex takes over
the role of the tip vortices, which eliminates the effects
of mutual interaction of two adjacent tip vortices and
eventually leads to stabilization of the tip vortices for

high values of J.

3. A unique multi-inductance instability mode of the tip
vortex for low J, called the overlap—forward phe-
nomenon, is proposed. This phenomenon is quite dif-
ferent from the normal leapfrogging phenomenon that
occurs with a single propeller.

4. It is found that the instability of the tip vortex depends
not only on the spiral-to-spiral distance but also on the
the highest-efficiency point of the propeller. Specifi-
cally, the spiral-to-spiral distance increases gradually
with increasing J. The instability inception point of the
tip vortex moves farther downstream with increasing J,
and, when J is greater than the highest-efficiency point
of the propeller (/ > 0.8 here), the stable length of the
tip vortices drops sharply.

5. A quite different instability mode of the hub vortex is
found for the R model. Under most working conditions
(0.4 < J < 1.0), the hub vortex remains coherent for
the entire length of the simulation. In addition, the hub
vortex takes the helix twisted form at near field behind
the hub. After that, the twist disappears gradually and
the hub vortex keeps stable until breakdown in the far
field. The usual double-helix breakdown and instability
of the hub vortex do not occur. The existence of trail-
ing root vortices is the reason why the hub vortex can
maintain its twist without the occurrence of instability.
The region where the hub vortex maintains its twist is
basically the same as the region where trailing root vor-
tices exist. The twist region survives for a longer dis-
tance with increasing J.

6. The fundamental frequencies of TKE fluctuations in the
tip vortex region are the rotor blade passing frequency
and its harmonics, while the fundamental frequency of
the hub vortex is the shaft rotation frequency. The en-
ergy transfer process of tip vortices from blade harmon-
ics to shaft harmonics depends on J and is related to the
spatial evolution of the tip vortices.
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