48,528 research outputs found

    Exotic mesons from quantum chromodynamics with improved gluon and quark actions on the anisotropic lattice

    Full text link
    Hybrid (exotic) mesons, which are important predictions of quantum chromodynamics (QCD), are states of quarks and anti-quarks bound by excited gluons. First principle lattice study of such states would help us understand the role of ``dynamical'' color in low energy QCD and provide valuable information for experimental search for these new particles. In this paper, we apply both improved gluon and quark actions to the hybrid mesons, which might be much more efficient than the previous works in reducing lattice spacing error and finite volume effect. Quenched simulations were done at β=2.6\beta=2.6 and on a ξ=3\xi=3 anisotropic 123×3612^3\times36 lattice using our PC cluster. We obtain 2013±26±712013 \pm 26 \pm 71 MeV for the mass of the 1+1^{-+} hybrid meson qˉqg{\bar q}qg in the light quark sector, and 4369±37±994369 \pm 37 \pm 99Mev in the charm quark sector; the mass splitting between the 1+1^{-+} hybrid meson cˉcg{\bar c}c g in the charm quark sector and the spin averaged S-wave charmonium mass is estimated to be 1302±37±991302 \pm 37 \pm 99 MeV. As a byproduct, we obtain 1438±32±571438 \pm 32 \pm 57 MeV for the mass of a P-wave 1++1^{++} uˉu{\bar u}u or dˉd{\bar d}d meson and 1499±28±651499 \pm 28 \pm 65 MeV for the mass of a P-wave 1++1^{++} sˉs{\bar s}s meson, which are comparable to their experimental value 1426 MeV for the f1(1420)f_1(1420) meson. The first error is statistical, and the second one is systematical. The mixing of the hybrid meson with a four quark state is also discussed.Comment: 12 pages, 3 figures. Published versio

    The perfect spin injection in silicene FS/NS junction

    Full text link
    We theoretically investigate the spin injection from a ferromagnetic silicene to a normal silicene (FS/NS), where the magnetization in the FS is assumed from the magnetic proximity effect. Based on a silicene lattice model, we demonstrated that the pure spin injection could be obtained by tuning the Fermi energy of two spin species, where one is in the spin orbit coupling gap and the other one is outside the gap. Moreover, the valley polarity of the spin species can be controlled by a perpendicular electric field in the FS region. Our findings may shed light on making silicene-based spin and valley devices in the spintronics and valleytronics field.Comment: 6 pages, 3 figure

    Bound States and Critical Behavior of the Yukawa Potential

    Full text link
    We investigate the bound states of the Yukawa potential V(r)=λexp(αr)/rV(r)=-\lambda \exp(-\alpha r)/ r, using different algorithms: solving the Schr\"odinger equation numerically and our Monte Carlo Hamiltonian approach. There is a critical α=αC\alpha=\alpha_C, above which no bound state exists. We study the relation between αC\alpha_C and λ\lambda for various angular momentum quantum number ll, and find in atomic units, αC(l)=λ[A1exp(l/B1)+A2exp(l/B2)]\alpha_{C}(l)= \lambda [A_{1} \exp(-l/ B_{1})+ A_{2} \exp(-l/ B_{2})], with A1=1.020(18)A_1=1.020(18), B1=0.443(14)B_1=0.443(14), A2=0.170(17)A_2=0.170(17), and B2=2.490(180)B_2=2.490(180).Comment: 15 pages, 12 figures, 5 tables. Version to appear in Sciences in China

    Hysteresis and Anisotropic Magnetoresistance in Antiferromagnetic Nd2xCexCuO4Nd_{2-x}Ce_xCuO_{4}

    Full text link
    The out-of-plane resistivity (ρc\rho_c) and magnetoresistivity (MR) are studied in antiferromangetic (AF) Nd2xCexCuO4Nd_{2-x}Ce_xCuO_{4} single crystals, which have three types of noncollinear antiferromangetic spin structures. The apparent signatures are observed in ρc(T)\rho_c(T) measured at the zero-field and 14 T at the spin structure transitions, giving a definite evidence for the itinerant electrons directly coupled to the localized spins. One of striking feature is an anisotropy of the MR with a fourfold symmetry upon rotating the external field (B) within ab plane in the different phases, while twofold symmetry at spin reorientation transition temperatures. The intriguing thermal hysteresis in ρc(T,B)\rho_c(T,B) and magnetic hysteresis in MR are observed at spin reorientation transition temperatures.Comment: 4 pages, 4 figure

    Metric adjusted skew information: Convexity and restricted forms of superadditivity

    Full text link
    We give a truly elementary proof of the convexity of metric adjusted skew information following an idea of Effros. We extend earlier results of weak forms of superadditivity to general metric adjusted skew informations. Recently, Luo and Zhang introduced the notion of semi-quantum states on a bipartite system and proved superadditivity of the Wigner-Yanase-Dyson skew informations for such states. We extend this result to general metric adjusted skew informations. We finally show that a recently introduced extension to parameter values 1<p2 1<p\le 2 of the WYD-information is a special case of (unbounded) metric adjusted skew information.Comment: An error in the literature is pointed ou

    Improved lattice QCD with quarks: the 2 dimensional case

    Get PDF
    QCD in two dimensions is investigated using the improved fermionic lattice Hamiltonian proposed by Luo, Chen, Xu, and Jiang. We show that the improved theory leads to a significant reduction of the finite lattice spacing errors. The quark condensate and the mass of lightest quark and anti-quark bound state in the strong coupling phase (different from t'Hooft phase) are computed. We find agreement between our results and the analytical ones in the continuum.Comment: LaTeX file (including text + 10 figures

    Integer quantum Hall effect and topological phase transitions in silicene

    Full text link
    We numerically investigate the effects of disorder on the quantum Hall effect (QHE) and the quantum phase transitions in silicene based on a lattice model. It is shown that for a clean sample, silicene exhibits an unconventional QHE near the band center, with plateaus developing at ν=0,±2,±6,,\nu=0,\pm2,\pm6,\ldots, and a conventional QHE near the band edges. In the presence of disorder, the Hall plateaus can be destroyed through the float-up of extended levels toward the band center, in which higher plateaus disappear first. However, the center ν=0\nu=0 Hall plateau is more sensitive to disorder and disappears at a relatively weak disorder strength. Moreover, the combination of an electric field and the intrinsic spin-orbit interaction (SOI) can lead to quantum phase transitions from a topological insulator to a band insulator at the charge neutrality point (CNP), accompanied by additional quantum Hall conductivity plateaus.Comment: 7 pages, 4 figure
    corecore